首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied microRNA gene expression in HeLa cells following exposure for 6 h and 8 days to Co60 gamma rays at a dose of 4 Gy using an approach of large-scale parallel DNA sequencing. We identified 12 microRNAs with aberrant expression which were maintained in cell generations. The analysis of radiation-induced aberrant expression of pre-microRNAs made it possible to assess the importance of nuclear and cytoplasmic stages of microRNA biogenesis for preservation of its aberrant expression. On cell treatment by 5-azacytidine, aberrant expression was maintained only in two microRNAs: miR-21-3p and miR-422a, which demonstrated an increase in expression. Radiation-induced decrease in expression in ten examined microRNAs was dependent on DNA demethylation. At the same time, expression in a microRNA set, which demonstrated inheritable alteration of the expression after gamma-radiation exposure in the untreated cells, was not dependent or was weakly dependent on DNA methylation. The obtained results suggest that ionizing radiation induces aberrant DNA methylation, which affects inherited expression changes in microRNAs in cell generations after exposure to the mutagen.  相似文献   

2.
An understanding of cellular processes that determine the response to ionizing radiation (IR) exposure is essential to improve radiotherapy and to assess risks to human health after accidental radiation exposure. Exposure to IR induces a multitude of biological effects. Recent studies have indicated the involvement of epigenetic events in regulating the responses of irradiated cells. DNA methylation, where the cytosine bases in CpG dimers are converted to 5-methyl cytosine, is an epigenetic event that has been shown to regulate a variety of biological processes. We investigated the DNA methylation changes in irradiated TK6 and WTK1 human cells that differ in sensitivity to IR. The global DNA methylation alterations as measured by an enzyme-linked immunosorbent assay-based assay showed hypomethylation in both type of cells. Using an arbitrarily primed polymerase chain reaction (AP-PCR) approach, we observed time-dependent dynamic changes in the regional genomic DNA methylation patterns in both cell lines. The AP-PCR DNA methylation profiles were different between TK6 and WTK1 cells, indicating the involvement of differential genomic DNA responses to radiation treatment. The analysis of the components of the DNA methylation machinery showed the modulation of maintenance and de novo methyltransferases in irradiated cells. DNMT1 mRNA levels were increased in TK6 cells after irradiation but were repressed in WTK1 cells. DNMT3A and DNMT3B were induced in both cells after radiation treatment. TET1, involved in the conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), was induced in both cells. This study demonstrates that irradiated cells acquire epigenetic changes in the DNA methylation patterns, and the associated cellular machinery are involved in the response to radiation exposure. This study also shows that DNA methylation patterns change at different genomic regions and are dependent on time after irradiation and the genetic background of the cell.  相似文献   

3.
Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 (137Cs) radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA) in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis) or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells.  相似文献   

4.
To investigate involvement of miRNAs in radiation responses we used microRNAome profiling to analyze the sex-specific response of radiation sensitive hematopoietic lymphoid tissues. We show that radiation exposure resulted in a significant and sex-specific deregulation of microRNA expression in murine spleen and thymus tissues. Among the regulated miRNAs, we found that changes in expression of miR-34a and miR-7 may be involved in important protective mechanisms counteracting radiation cytotoxicity. We observed a significant increase in the expression of tumor-suppressor miR-34a, paralleled by a decrease in the expression of its target oncogenes NOTCH1, MYC, E2F3 and cyclin D1. Additionally, we show that miR-7 targets the lymphoid-specific helicase LSH, a pivotal regulator of DNA methylation and genome stability. While miR-7 was significantly down-regulated LSH was significantly up-regulated. These cellular changes may constitute an attempt to counteract radiation-induced hypomethylation. Tissue specificity of miRNA responses and possible regulation of miRNA expression upon irradiation are discussed.  相似文献   

5.
It has been acknowledged for many years that radiation exposure induces delayed, non-targeted effects in the progeny of the irradiated cell. Evidence is beginning to demonstrate that among these delayed effects of radiation are epigenetic aberrations, including altered DNA methylation. To test the hypothesis that differences in radiation quality affect radiation-induced DNA methylation profiles, normal AG01522 and RKO colon carcinoma cells were exposed to low-LET X rays and protons or high-LET iron ions. DNA methylation was then evaluated at delayed times using assays for p16 and MGMT promoter, LINE-1 and alu repeat element, and global methylation. The results of these experiments demonstrated radiation-induced changes in repeat element and global DNA methylation patterns at ~20 population doublings postirradiation. Further, radiation-induced changes in repeat element and global DNA methylation were more similar between proton- and iron-ion-irradiated cells than X-irradiated cells, suggesting that radiation quality rather than LET alone affects the radiation-induced epigenetic profile. Since alterations in DNA methylation have also emerged as one of the most consistent molecular alterations in cancer, these data also suggest the possibility that radiation-induced carcinogenic risk might be affected by radiation quality.  相似文献   

6.
The biological and genetic effects of chronic low-dose radiation (LDR) exposure and its relationship to carcinogenesis have received a lot of attention in the recent years. For example, radiation-induced genome instability, which is thought to be a precursor of tumorogenesis, was shown to have a transgenerational nature. This indicates a possible involvement of epigenetic mechanisms in LDR-induced genome instability. Genomic DNA methylation is one of the most important epigenetic mechanisms. Existing data on radiation effects on DNA methylation patterns is limited, and no one has specifically studied the effects of the LDR. We report the first study of the effects of whole-body LDR exposure on global genome methylation in muscle and liver tissues of male and female mice. In parallel, we evaluated changes in promoter methylation and expression of the tumor suppressor gene p16(INKa) and DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT). We observed different patterns of radiation-induced global genome DNA methylation in the liver and muscle of exposed males and females. We also found sex and tissue-specific differences in p16(INKa) promoter methylation upon LDR exposure. In male liver tissue, p16(INKa) promoter methylation was more pronounced than in female tissue. In contrast, no significant radiation-induced changes in p16(INKa) promoter methylation were noted in the muscle tissue of exposed males and females. Radiation also did not significantly affect methylation status of MGMT promoter. We also observed substantial sex differences in acute and chronic radiation-induced expression of p16(INKa) and MGMT genes. Another important outcome of our study was the fact that chronic low-dose radiation exposure proved to be a more potent inducer of epigenetic effects than the acute exposure. This supports previous findings that chronic exposure leads to greater genome destabilization than acute exposure.  相似文献   

7.
BORIS is a member of the cancer-testis gene family that comprises genes normally expressed only in testis but abnormally activated in different malignancies. In this study, we examined the relation between BORIS expression and gastric cancer, which is the most common cancer in Korea. Abnormal BORIS expression in the patient's gastric cancer tissues was observed. We checked the methylation status of the gene in gastric cancer tissue, because the regulation by methylation in its CpG islands is well known for BORIS. However, there was no correlation between the methylation status and gene expression. Then, we focused on the minisatellites (variable number of tandem repeats) of BORIS as another possible regulator for this abnormal expression. Previously, we reported the characterization of BORIS-MS2 and determined the frequency of alleles in cancer patients. A case-control study was performed using DNA from 774 controls and 496 patients with gastric cancer. There was no significant difference observed in the overall distribution of minisatellite alleles. These results suggest that additional different regulators for the abnormal BORIS expression in gastric cancer may exist. Additionally, we performed a segregation analysis of BORIS-MS2 with genomic DNA obtained from two generations of five families and from three generations of two families. BORIS-MS2 alleles were transmitted through meiosis following Mendelian inheritance, which suggests that this polymorphic minisatellite could be a useful marker for paternity mapping and DNA fingerprinting.  相似文献   

8.
Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress.  相似文献   

9.
The hepatitis B virus x (HBx) protein has been implicated in HBV-related hepatocellular carcinoma (HCC) pathogenesis. However, whether HBx regulates miRNA expression that plays important roles in gene regulation during hepatocarcinogenesis remains unknown. The expression of microRNA-101 (miR-101) in HBV-related HCC tissues and HCC cells was evaluated by real-time PCR. The direct target of miR-101, DNA methyltransferase 3A (DNMT3A), was identified in silico and validated using a 3′-UTR reporter assay. miR-101 was functionally characterized in cells with transiently altered miR-101 expression. HBx expression was found to have a significant inverse correlation with miR-101 expression in HBx-expressing HepG2 compared to control HepG2 cells. miR-101 expression was frequently down-regulated in HBV-related HCC tissues compared to adjacent noncancerous hepatic tissues and had a significant inverse correlation with DNMT3A expression in HBV-related HCCs. Further characterization of miR-101 revealed that it negatively regulated DNA methylation partly through targeting DNMT3A. HBx-mediated miR-101 down-regulation and DNMT3A up-regulation supported the enhanced DNA methylation of several tumor-suppressor genes in HBx-expressing cells. Our studies demonstrating the deregulation of miR-101 expression by HBx may provide novel mechanistic insights into HBV-mediated hepatocarcinogenesis and identify a potential miRNA-based targeted approach for treating HBV-related HCC.  相似文献   

10.
In fetal and newborn rat testes, gonocytes, which stop cycling for about 8 days, become highly radiosensitive. The presence of p53, p21, mdm2, and pRb, which are involved in cell cycle, apoptosis control, or both, were studied by immunohistochemistry to determine if their expression is related to this radiosensitivity. A strong cytoplasmic expression of p53 and p21 was detected. Cytoplasmic expression of p53 occurred only in arrested gonocytes, whereas that of p21 was observed before and after the block. P21 was found to colocalize with mitochondria. No expression of mdm2 was detected and pRb was present only when the gonocytes started cycling again. In animals exposed to 1.5 Gy of gamma-irradiation at Day 19 postcoitum, p53 expression was prolonged in time, whereas no change was observed in p21 amounts and localization, compared with controls. Using antibodies against 5-methyl cytosine, it was shown that gonocyte DNA passed from a hypomethylated to a methylated status 1 day after gonocytes stopped cycling. A prolonged survival of gonocytes after exposure to radiation was followed by their progressive apoptosis, which finally involved the entire gonocyte population between Days 6 and 12 postpartum. The elevated but delayed sensitivity of gonocytes to genotoxic stress may be related to the unusual expression of p53 and p21, which may itself be related to the large DNA methylation changes.  相似文献   

11.
MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN   总被引:1,自引:0,他引:1  
DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.  相似文献   

12.
13.
Mature microRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranslational gene silencing. Previous studies found that downregulation of miRNAs is a common feature observed in solid tumors, including hepatocellular carcinoma (HCC). We employed a genome-wide approach to test the hypothesis that DNA methylation alterations in miRNA host genes may cause deregulated miRNA expression in HCC. We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Infinium HumanMethylation27 DNA Analysis BeadChips that include 254 CpG sites covering 110 miRNAs from 64 host genes. Expression levels of three identified miRNAs (miR-10a, miR-10b and miR-196b) were measured in a subset of 37 HCC tumor and non-tumor tissues. After Bonferroni adjustment, a total of 54 CpG sites from 27 host genes significantly differed in DNA methylation levels between tumor and adjacent non-tumor tissues with 53 sites significantly hypermethylated in tumor tissues. Among the 54 significant CpG sites, 15 sites had more than 2-fold tumor/non-tumor changes, 17 sites had differences > 10%, and 10 sites had both features [including 8 significantly hypermethylated CpG sites in the host genes of miR-10a, miR-10b and miR-196b (HOXB4, HOXD4 and HOXA9, respectively)]. Significant downregulation of miR-10a was observed in tumor compared with non-tumor tissues (0.50 vs. 1.73, p = 0.031). The concordance for HOXB4 methylation alteration and dysregulation of miR-10a was 73.5%. No significant change was observed for miR-10b expression. Unexpectedly, miR-196b was significantly upregulated in tumor compared with non-tumor tissues (p = 0.0001). These data suggest that aberrant DNA methylation may lead to dysregulation of miR-10a in HCC tumor tissues.  相似文献   

14.
《Epigenetics》2013,8(11):1230-1237
Mature microRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranslational gene silencing. Previous studies found that downregulation of miRNAs is a common feature observed in solid tumors, including hepatocellular carcinoma (HCC). We employed a genome-wide approach to test the hypothesis that DNA methylation alterations in miRNA host genes may cause deregulated miRNA expression in HCC. We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Infinium HumanMethylation27 DNA Analysis BeadChips that include 254 CpG sites covering 110 miRNAs from 64 host genes. Expression levels of three identified miRNAs (miR-10a, miR-10b and miR-196b) were measured in a subset of 37 HCC tumor and non-tumor tissues. After Bonferroni adjustment, a total of 54 CpG sites from 27 host genes significantly differed in DNA methylation levels between tumor and adjacent non-tumor tissues with 53 sites significantly hypermethylated in tumor tissues. Among the 54 significant CpG sites, 15 sites had more than 2-fold tumor/non-tumor changes, 17 sites had differences > 10%, and 10 sites had both features [including 8 significantly hypermethylated CpG sites in the host genes of miR-10a, miR-10b and miR-196b (HOXB4, HOXD4 and HOXA9, respectively)]. Significant downregulation of miR-10a was observed in tumor compared with non-tumor tissues (0.50 vs. 1.73, p = 0.031). The concordance for HOXB4 methylation alteration and dysregulation of miR-10a was 73.5%. No significant change was observed for miR-10b expression. Unexpectedly, miR-196b was significantly upregulated in tumor compared with non-tumor tissues (p = 0.0001). These data suggest that aberrant DNA methylation may lead to dysregulation of miR-10a in HCC tumor tissues.  相似文献   

15.
16.
17.
Yang Y  Wang LL  Li YH  Gao XN  Liu Y  Yu L 《Biochemical genetics》2012,50(1-2):122-134
To test the hypothesis that methylation of a CpG island is associated with regulation of microRNA expression, we investigated CpG islands in the upstream sequences of microRNA precursors (pre-miRNAs) through bioinformatic analysis and determined whether the CpG islands were methylated by methylation-specific PCR in the k-562 cell line. We used 5-azacytidine for DNA demethylation, and changes in microRNA expression were detected by microarray assay, RT-PCR, and real-time PCR after 5-azacytidine induction. We showed that the CpG islands in the upstream regions of 18 pre-miRNAs were methylated, including miR-663, miR-369, miR-615, and miR-410, and promoter activity was detected in the upstream region of pre-miR-663. We found that a decrease in methylation of a CpG island could up-regulate the expression of miR-663, suggesting that miR-663 could be regulated by DNA methylation. Expression levels of miR-369, miR-615, and miR-410 were not regulated by DNA methylation in this cell line.  相似文献   

18.
19.
Shi Y  Zhang X  Tang X  Wang P  Wang H  Wang Y 《Radiation research》2012,177(1):124-128
Ionizing radiation stimulates miR-21 expression in different types of mammalian cells in culture. However, it remains unclear whether radiation could stimulate miR-21 expression in brain cells and tissue and, if so, how long the upregulation of miR-21 would be maintained after exposure to different types of radiation. To answer these questions, we examined the miR-21 levels in irradiated mouse hippocampal cells and brain tissue from mice at different times up to 1 year after whole-body exposure to 0.5 Gy of X rays [low linear energy transfer (LET)] or (56)Fe ions (high LET). The results showed that radiation stimulated miR-21 expression in mouse hippocampal cells and upregulation of EGFR, which is similar to that in human hepatocytes, as we reported previously. Interestingly, the miR-21 levels gradually increased within 1 year after irradiation, although there was no significant difference in the miR-21 low- and high-LET irradiated mice. The high expression of miR-21 in the brain was also associated with high expression of EGFR in irradiated mice; thus our data strongly support that EGFR and miR-21 are in a positive regulatory loop, because it is known that radiation stimulates miR-21 through the EGFR/Stat3 pathway and miR-21 activates the EGFR pathway. Since the brain is relatively resistant to radiation-induced histomorphological changes, our findings may provide a new way to explore radiation-induced pathological changes in the brain by investigating miR-21 and its multiple targets.  相似文献   

20.
We tested the hypothesis that miR-133a regulates DNA methylation by inhibiting Dnmt-1 (maintenance) and Dnmt-3a and -3b (de novo) methyl transferases in diabetic hearts by using Ins2(+/-) Akita (diabetic) and C57BL/6J (WT), mice and HL1 cardiomyocytes. The specific role of miR-133a in DNA methylation in diabetes was assessed by two treatment groups (1) scrambled, miR-133a mimic, anti-miR-133a, and (2) 5mM glucose (CT), 25mM glucose (HG) and HG+miR-133a mimic. The levels of miR-133a, Dnmt-1, -3a and -3b were measured by multiplex RT-PCR, qPCR and Western blotting. The results revealed that miR-133a is inhibited but Dnmt-1 and -3b are induced in Akita suggesting that attenuation of miR-133a induces both maintenance (Dnmt-1) - and de novo - methylation (Dnmt-3b) in diabetes. The up regulation of Dnmt-3a in Akita hearts elicits intricate and antagonizing interaction between Dnmt-3a and -3b. In cardiomyocytes, over expression of miR-133a inhibits but silencing of miR-133a induces Dnmt-1, -3a and -3b elucidating the involvement of miR-133a in regulation of DNA methylation. The HG treatment up regulates only Dnmt-1 and not Dnmt-3a and -3b suggesting that acute hyperglycemia triggers only maintenance methylation. The over expression of miR-133a mitigates glucose mediated induction of Dnmt-1 illustrating the role of miR-133a in regulation of DNA methylation in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号