首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Detachment of nonmalignant intestinal epithelial cells from the extracellular matrix (ECM) triggers their growth arrest and, ultimately, apoptosis. In contrast, colorectal cancer cells can grow without attachment to the ECM. This ability is critical for their malignant potential. We found previously that detachment-induced growth arrest of nonmalignant intestinal epithelial cells is driven by their detachment-triggered autophagy, and that RAS, a major oncogene, promotes growth of detached cells by blocking such autophagy. In an effort to identify the mechanisms of detachment-induced autophagy and growth arrest of nonmalignant cells we found here that detachment of these cells causes upregulation of ATG3 and that ATG3 upregulation contributes to autophagy and growth arrest of detached cells. We also observed that when ATG3 expression is artificially increased in the attached cells, ATG3 promotes neither autophagy nor growth arrest but triggers their apoptosis. ATG3 upregulation likely promotes autophagy of the detached but not that of the attached cells because detachment-dependent autophagy requires other detachment-induced events, such as the upregulation of ATG7. We further observed that those few adherent cells that do not die by apoptosis induced by ATG3 become resistant to apoptosis caused by cell detachment, a property that is critical for the ability of normal epithelial cells to become malignant. We conclude that cell-ECM adhesion can switch ATG3 functions: when upregulated in detached cells in the context of other autophagy-promoting events, ATG3 contributes to autophagy. However, when overexpressed in the adherent cells, in the circumstances not favoring autophagy, ATG3 triggers apoptosis.  相似文献   

3.
Imatinib, the anti-Abl tyrosine kinase inhibitor used as first-line therapy in chronic myeloid leukemia (CML), eliminates CML cells mainly by apoptosis and induces autophagy. Analysis of imatinib-treated K562 cells reveals a cell population with cell cycle arrest, p27 increase and senescence-associated beta galactosidase (SA-β-Gal) staining. Preventing apoptosis by caspase inhibition decreases annexin V-positive cells, caspase-3 cleavage and increases the SA-β-Gal-positive cell population. In addition, a concomitant increase of the cell cycle inhibitors p21 and p27 is detected emphasizing the senescent phenotype. Inhibition of apoptosis by targeting Bim expression or overexpression of Bcl2 potentiates senescence. The inhibition of autophagy by silencing the expression of the proteins ATG7 or Beclin-1 prevents the increase of SA-β-Gal staining in response to imatinib plus Z-Vad. In contrast, in apoptotic-deficient cells (Bim expression or overexpression of Bcl2), the inhibition of autophagy did not significantly modify the SA-β-Gal-positive cell population. Surprisingly, targeting autophagy by inhibiting ATG5 is accompanied by a strong SA-β-Gal staining, suggesting a specific inhibitory role on senescence. These results demonstrate that in addition to apoptosis and autophagy, imatinib induced senescence in K562 CML cells. Moreover, apoptosis is limiting the senescent response to imatinib, whereas autophagy seems to have an opposite role.  相似文献   

4.
Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies including acute lymphoblastic leukemia (ALL). The BCL-2 family has an essential role in regulating GC-induced cell death. Here we show that downregulation of antiapoptotic BCL-2 family proteins, especially MCL-1, enhances GC-induced cell death. Thus we target MCL-1 by using GX15-070 (obatoclax) in ALL cells. Treatment with GX15-070 in both dexamethasone (Dex)-sensitive and -resistant ALL cells shows effective growth inhibition and cell death. GX15-070 induces caspase-3 cleavage and increases the Annexin V-positive population, which is indicative of apoptosis. Before the onset of apoptosis, GX15-070 induces LC3 conversion as well as p62 degradation, both of which are autophagic cell death markers. A pro-apoptotic molecule BAK is released from the BAK/MCL-1 complex following GX15-070 treatment. Consistently, downregulation of BAK reduces caspase-3 cleavage and cell death, but does not alter LC3 conversion. In contrast, downregulation of ATG5, an autophagy regulator, decreases LC3 conversion and cell death, but does not alter caspase-3 cleavage, suggesting that apoptosis and autophagy induced by GX15-070 are independently regulated. Downregulation of Beclin-1, which is capable of crosstalk between apoptosis and autophagy, affects GX15-070-induced cell death through apoptosis but not autophagy. Taken together, GX15-070 treatment in ALL could be an alternative regimen to overcome glucocorticoid resistance by inducing BAK-dependent apoptosis and ATG5-dependent autophagy.  相似文献   

5.
Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.  相似文献   

6.
7.
Chin TY  Kao CH  Wang HY  Huang WP  Ma KH  Chueh SH 《Autophagy》2010,6(8):1139-1156
To clarify the involvement of autophagy in neuronal differentiation, the effect of rapamycin, an mTOR complex inhibitor, on the dibutyryl cAMP (dbcAMP)-induced differentiation of NG108-15 cells was examined. Treatment of NG108-15 cells with 1 mM dbcAMP resulted in induction of differentiation, including neurite outgrowth and varicosity formation, enhanced voltage-sensitive Ca2+ channel activity and expression of microtubule-associated protein 2, and these effects involved phosphorylation of cAMP-response element binding protein (CREB) and extracellular signal regulated kinase (ERK). Simultaneous application of dbcAMP and rapamycin synergistically increased and accelerated differentiation. mTOR or raptor silencing with siRNA had a similar effect to rapamycin. Rapamycin and silencing of mTOR or raptor evoked autophagy, while blockade of autophagy by addition of 3-methyladenine or beclin 1 or Atg5 silencing prevented the potentiation of differentiation. Silencing of rictor also evokes autophagy, at a level 55% of that induced by raptor silencing and enhancement of differentiation is proportional. Rapamycin also caused increased ATP generation and cell cycle arrest in G0/G1 phase, but had no effect on CREB and ERK phosphorylation. dbcAMP also induced ATP generation, but not autophagy or cell cycle arrest. These results suggest that the increased autophagy, ATP generation and cell cycle arrest caused by mTOR inhibition promotes the dbcAMP-induced differentiation of NG108-15 cells.  相似文献   

8.
Cyclin-dependent kinase (CDK) inhibitor p27Kip1 binds to the cyclin E.CDK2 complex and plays a major role in controlling cell cycle and cell growth. Our group and others have reported that anti-HER2 monoclonal antibodies exert inhibitory effects on HER2-overexpressing breast cancers through G1 cell cycle arrest associated with induction of p27Kip1 and reduction of CDK2. The role of p27Kip1 in anti-HER2 antibody-induced cell cycle arrest and growth inhibition is, however, still uncertain. Here we have provided several lines of evidence supporting a critical role for p27Kip1 in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. Induction of p27Kip1 and G1 growth arrest by anti-HER2 antibody, murine 4D5, or humanized trastuzumab (Herceptin) are concentration-dependent, time-dependent, irreversible, and long-lasting. The magnitude of G1 cell cycle arrest induced by trastuzumab or 4D5 is well correlated with the level of p27Kip1 protein induced. Up-regulation of p27Kip1 and G1 growth arrest could no longer be removed with as little as 14 h of treatment with trastuzumab. Anti-HER2 antibody-induced p27Kip1 protein, G1 arrest, and growth inhibition persist at least 5 days after a single treatment. The magnitude of growth inhibition of breast cancer cells induced by anti-HER2 antibody closely parallels the level of p27Kip1 induced. Induced expression of exogenous p27Kip1 results in a p27Kip1 level-dependent G1 cell cycle arrest and growth inhibition similar to that obtained with anti-HER2 antibodies. Reducing p27Kip1 expression using p27Kip1 small interfering RNA blocks anti-HER2 antibody-induced p27Kip1 up-regulation and G1 arrest. Treatment with anti-HER2 antibody significantly increases the half-life of p27Kip1 protein. Inhibition of ubiquitin-proteasome pathway, but not inhibition of calpain and caspase activities, up-regulates p27Kip1 protein to a degree comparable with that obtained with anti-HER2 antibodies. We have further demonstrated that anti-HER2 antibody significantly decreases threonine phosphorylation of p27Kip1 protein at position 187 (Thr-187) and increases serine phosphorylation of p27Kip1 protein at position 10 (Ser-10). Expression of S10A and T187A mutant p27Kip1 protein increases the fraction of cells in G1 and reduces a further antibody-induced G1 arrest. Consequently, p27Kip1 plays an important role in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition through post-translational regulation. Regulation of the phosphorylation of p27Kip1 protein is one of the post-translational mechanisms by which anti-HER2 antibody upregulates the protein.  相似文献   

9.
The impact of particulate matter 2.5 (PM2.5) on the respiratory system is a worldwide concern. However, the mechanisms by which PM2.5 causes disease are still unclear. In this study, we investigated the effect of PM2.5 on autophagy and studied the effect of PM2.5-induced autophagy and 5′-adenosine monophosphate-activated protein kinase (AMPK) on cell proliferation, cell cycle, apoptosis, reactive oxygen species (ROS), and airway inflammation using human bronchial epithelial cells 16HBE140 cells. Results showed that exposure of cells to PM2.5 at a concentration of 100 μg/mL for 24 hours was most effective for inhibiting cell viability. PM2.5 induced cell arrest in the G0/G1 phase and increased mitochondrial membrane potential, ROS, and cell apoptosis with increasing concentration. PM2.5 downregulated cyclin D and matrix metallopeptidase-9 (MMP-9) expression but upregulated tissue inhibitor of metalloproteinases-1 (TIMP-1) expression, significantly promoted interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) production, and enhanced the level and activation of AMPK. The levels of autophagy-related protein 5 (ATG5), Beclin-1, and LC3II/I were significantly increased by PM2.5. The activation of Unc-51-like autophagy activating kinase 1 was significantly inhibited by PM2.5. Moreover, ATG5 knockdown inhibited PM2.5-induced autophagy, ROS, and cell apoptosis significantly. The expression of cyclin D, MMP-9, and TIMP-1 was reversed by ATG5 suppression. PM2.5-induction of IL-6 and TNF-α was significantly inhibited by knockdown of ATG5. Thus, inhibition of autophagy protected the cells from PM2.5-induced injury. PM2.5 induced injury in human bronchial epithelial cells via activation of AMPK-mediated autophagy, suggesting possible therapeutic targets for the treatment of respiratory diseases.  相似文献   

10.
11.
12.
Autophagy can either promote or inhibit cell death in different cellular contexts. In this study, we investigated the role of autophagy in ATG5 knockout (KO) cell line established using CRISPR/Cas9 system. In ATG5 KO cells, RT‐PCR and immunoblot of LC3 confirmed the functional gene knockout. We found that knockout of ATG5 significantly increased proliferation of NIH 3T3 cells. In particular, autophagy deficiency enhanced susceptibility to cellular transformation as determined by an in vitro clonogenic survival assay and a soft agar colony formation assay. We also found that ATG5 KO cells had a greater migration ability as compared to wild‐type (WT) cells. Moreover, ATG5 KO cells were more resistant to treatment with a Src family tyrosine kinase inhibitor (PP2) than WT cells were. Cyto‐ID Green autophagy assay revealed that PP2 failed to induce autophagy in ATG5 KO cells. PP2 treatment decreased the percentage of cells in the S and G2/M phases among WT cells but had no effect on cell cycle distribution of ATG5 KO cells, which showed a high percentage of cells in the S and G2/M phases. Additionally, the proportion of apoptotic cells significantly decreased after treatment of ATG5 KO cells with PP2 in comparison with WT cells. We found that expression levels of p53 were much higher in ATG5 KO cells. The ATG5 KO seems to lead to compensatory upregulation of the p53 protein because of a decreased apoptosis rate. Taken together, our results suggest that autophagy deficiency can lead to malignant cell transformation and resistance to PP2.  相似文献   

13.
microRNAs(miRNAs)是一类在真核生物中广泛存在的长度约为20~22个核苷酸的单链非编码小RNA,通过与其靶基因mRNA的3′非翻译区(3′UTR)结合发挥转录后抑制作用,参与调节细胞生长增殖、细胞代谢、细胞凋亡以及肿瘤的发生发展等过程。为研究microRNA-424-5p(miR-424-5p)在肺癌细胞中的作用及机理,利用lipo2000转染试剂将miR-424-5p mimics转染入人的非小细胞型肺癌细胞(NSCLC)A549中,流式细胞术检测A549细胞的周期变化及凋亡情况,发现细胞生长阻滞于G1/G0期且凋亡率显著上升。利用克隆形成实验和CCK-8法分别检测,发现miR-424-5p导致A549细胞增殖能力及活力降低。用在线数据库预测出抗凋亡基因BCL-2可能是miR-424-5p的靶基因,随后扩增BCL-2 mRNA 的3′UTR,采用双荧光素酶报告实验及Western印迹检测证明BCL-2确为miR-424-5p的靶基因。构建BCL-2的真核表达载体pCMV-HA-BCL-2,与空载分别转染A549细胞后发现过表达BCL-2可抵消miR-424-5p引起的细胞周期阻滞及细胞凋亡。以上结果提示,miR-424-5p可以通过下调BCL-2的表达来抑制肺癌细胞增殖。  相似文献   

14.
Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate   总被引:27,自引:0,他引:27  
Epidemiological, in vitro cell culture, and in vivo animal studies have shown that green tea or its constituent polyphenols, particularly its major polyphenol epigallocatechin-3-gallate (EGCG) may protect against many cancer types. In earlier studies, we showed that green tea polyphenol EGCG causes a G0/G1-phase cell cycle arrest and apoptosis of human epidermoid carcinoma (A431) cells. We also demonstrated that these effects of EGCG may be mediated through the inhibition of nuclear factor kappa B that has been associated with cell cycle regulation and cancer. In this study, employing A431 cells, we provide evidence for the involvement of cyclin kinase inhibitor (cki)-cyclin-cyclin-dependent kinase (cdk) machinery during cell cycle deregulation by EGCG. As shown by immunoblot analysis, EGCG treatment of the cells resulted in significant dose- and time-dependent (i) upregulation of the protein expression of WAF1/p21, KIP1/p27, p16 and p18, (ii) downmodulation of the protein expression of cyclin D1, cdk4 and cdk6, but not of cyclin E and cdk2, (iii) inhibition of the kinase activities associated with cyclin E, cyclin D1, cdk2, cdk4 and cdk6. Taken together, our study suggests that EGCG causes an induction of G1-phase ckis, which inhibit the cyclin-cdk complexes operative in G0/G1 phase of the cell cycle thereby causing a G0/G1-phase arrest of the cell cycle, which is an irreversible process ultimately resulting in an apoptotic cell death. We suggest that the naturally occurring agents such as green tea polyphenols which may inhibit cell cycle progression could be developed as potent anticancer agents for the management of cancer.  相似文献   

15.
BCL2 and BCL-x(L) facilitate G(0) quiescence by decreasing RNA content and cell size and up-regulating p27 protein, but the precise mechanism is not understood. We investigated the relationship between cell cycle regulation and the anti-apoptosis function of BCL2 and BCL-x(L). Neither caspase inhibition nor abrogation of mitochondria-dependent apoptosis by BAX and BAK deletion fully recapitulated the G(0) effects of BCL2 or BCL-x(L), suggesting that mechanisms in addition to anti-apoptosis are involved in the cell cycle arrest function of BCL2 or BCL-x(L). We found that BCL2 and BCL-x(L) expression in bax(-/-) bak(-/-) cells did not confer cell cycle effects, consistent with the G(0) function of BCL2 and BCL-x(L) being mediated through BAX or BAK. Stabilization of p27 in G(0) in BCL2 or BCL-x(L) cells was due to phosphorylation of p27 at Ser(10) by the kinase Mirk. In bax(-/-) bak(-/-) cells, total p27 and p27 phosphorylated at Ser(10) were elevated. Re-expression of BAX in bax(-/-) bak(-/-) cells and silencing of BAX and BAK in wild type cells confirmed that endogenous BAX and BAK modulated p27. These data revealed a novel role for BAX and BAK in the regulation of G(0) quiescence.  相似文献   

16.
Bovine type I collagen (BIC), which is widely used as a fibrous extracellular matrix component in cell culture models, inhibits the progression of melanoma cell cycle via p27 up-regulation. BIC also induces nitric oxide synthase in macrophages through JunB/AP-1 and NF-kappaB activation. Given the previous observations, this study investigates the effect of BIC on the cell cycle progression and regulatory function of Raw264.7 macrophage cells and the responsible signaling pathways. Cell cycle analysis revealed that BIC completely suppressed proliferation of Raw264.7 cells with inhibition of the percentage of cells in the S phase and the reciprocal decrease in the G0/G1 phase. DNA synthesis was also inhibited by BIC, as evidenced by a decrease in the cellular incorporation of [3H]thymidine. The G1/S arrest induced by BIC was reversed by chemical inhibition of phosphatidylinositol 3-kinase (PI3-kinase) or overexpression of the p85 subunit of PI3-kinase. Either PD98059 or stable transfection with mitogen-activated protein kinase kinase-1 [MKK1(-)] or c-Jun N-terminal kinase 1 [JNK1(-)] also released the cell cycle arrest. Immunoblot analyses revealed that the levels of cyclins D1, A and B1 were partly or completely down-regulated by BIC, but cyclin E, p21 and p27 were minimally changed. Chemical inhibition and dominant negative mutant overexpression experiments revealed that either PI3-kinase inhibition or JNK1(-) transfection prevented the decreases in cyclin D1, A and B1 by BIC, indicating that the PI3-kinase and JNK1 pathways were associated with disruption of the cyclins. The pathway involving MKK1-extracellular signal-regulated kinase-1/2 (ERK1/2) was responsible for the suppression of cyclin A and B1, but not that of cyclin D1. The present study showed that BIC inhibited proliferation of Raw264.7 cells and that the pathways involving PI3-kinase and mitogen-activated protein kinases regulate the cell cycle arrest.  相似文献   

17.
Eum KH  Lee M 《Molecules and cells》2011,31(3):231-238
The effectiveness of an apoptosis-targeting therapy may be limited in tumor cells with defects in apoptosis. Recently, considerable attention in the field of cancer therapy has been focused on the mammalian rapamycin target (mTOR), inhibition of which results in autophagic cell death. In our study using multidrug-resistant v-Ha-rastransformed NIH3T3 (Ras-NIH 3T3/Mdr) cells, we demonstrated that rapamycin-induced cell death may result from 2 different mechanisms. At high rapamycin concentrations (≥ 100 nM), cell death may occur via an autophagy-dependent pathway, whereas at lower concentrations (≤ 10 nM), cell death may occur after G1-phase cell cycle arrest. This effect was accompanied by upregulation of p21Cip1 and p27Kip1 expression via an autophagy-independent pathway. We also tested whether inhibition of mTOR with low concentrations of rapamycin and ectopic Beclin-1 expression would further sensitize multidrug resistance (MDR)-positive cancer cells by upregulating autophagy. Rapamycin at low concentrations might be insufficient to initiate autophagosome formation in autophagy but Beclin-1 overexpression triggered additional processes downstream of mTOR during G1 cell cycle arrest by rapamycin. Our findings suggest that these combination strategies targeting autophagic cell death may yield significant benefits for cancer patients, because lowering rapamycin concentration for cancer treatment minimizes its side effects in patients undergoing chemotherapy.  相似文献   

18.
Activation of protein kinase C (PKC) inhibits cell cycle progression at the G1/S and G2/M transitions. We found that phorbol 12-myristate 13-acetate (PMA) induced upregulation of p21, not only in MCF-7 cells arrested in the G1 phase as previously shown, but also in cells delayed in the G2 phase. This increase in p21 in cells accumulated in the G1 and G2/M phases of the cell cycle after PMA treatment was inhibited by the PKC inhibitor GF109203X. This indicates that PKC activity is required for PMA-induced p21 upregulation and cell cycle arrest in the G1 and G2/M phases of the cell cycle. To further assess the role of p21 in the PKC-induced G2/M cell cycle arrest independently of its G1 arrest, we used aphidicolin-synchronised MCF-7 cells. Our results show that, in parallel with the inhibition of cdc2 activity, PMA addition enhanced the associations between p21 and either cyclin B or cdc2. Furthermore, we found that after PMA treatment p21 was able to associate with the active Tyr-15 dephosphorylated form of cdc2, but this complex was devoid of kinase activity indicating that p21 may play a role in inhibition of cdc2 induced by PMA. Taken together, these observations provide evidence that p21 is involved in integrating the PKC signaling pathway to the cell cycle machinery at the G2/M cell cycle checkpoint.  相似文献   

19.
20.
The cellular mechanisms regulating intestinal differentiation are poorly understood. Sodium butyrate (NaBT), a short-chain fatty acid, increases p27 Kip1 expression and induces cell cycle arrest associated with intestinal cell differentiation. Here, we show that treatment of intestinal-derived cells with NaBT induced G0/G1 arrest and intestinal alkaline phosphatase, a marker of differentiation, activity and mRNA expression; this induction was attenuated by inhibition of glycogen synthase kinase-3 (GSK-3). Moreover, treatment with NaBT increased the nuclear, but not the cytosolic, expression and activity of GSK-3beta. NaBT decreased cyclin-dependent kinase CDK2 activity and induced p27 Kip1 expression; inhibition of GSK-3 rescued NaBT-inhibited CDK2 activity and blocked NaBT-induced p27 Kip1 expression in the nucleus but not in the cytoplasm. In addition, we demonstrate that NaBT decreased the expression of S-phase kinase-associated protein 2 (Skp2), and this decrease was attenuated by GSK-3 inhibition. Furthermore, NaBT increased p27 Kip1 binding to CDK2, which was completely abolished by GSK-3 inhibition. Overexpression of an active form of GSK-3beta reduced Skp2 expression, increased p27 Kip1 in the nucleus and increased p27 Kip1 binding to CDK2. Our results suggest that GSK-3 not only regulates nuclear p27 Kip1 expression through the downregulation of nuclear Skp2 expression but also functions to regulate p27 Kip1 assembly with CDK2, thereby playing a critical role in the G0/G1 arrest associated with intestinal cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号