首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila embryo dorsoventral (DV) polarity is defined by serine protease activity in the perivitelline space (PVS) between the embryonic membrane and the inner layer of the eggshell. Gastrulation Defective (GD) cleaves and activates Snake (Snk). Activated Snk cleaves and activates Easter (Ea), exclusively on the ventral side of the embryo. Activated Ea then processes Sp?tzle (Spz) into the activating ligand for Toll, a transmembrane receptor that is distributed throughout the embryonic plasma membrane. Ventral activation of Toll depends upon the activity of the Pipe sulfotransferase in the ventral region of the follicular epithelium that surrounds the developing oocyte. Pipe transfers sulfate residues to several protein components of the inner vitelline membrane layer of the eggshell. Here we show that GD protein becomes localized in the ventral PVS in a Pipe-dependent process. Moreover, ventrally concentrated GD acts to promote the cleavage of Ea by Snk through an extracatalytic mechanism that is distinct from GD's proteolytic activation of Snk. Together, these observations illuminate the mechanism through which spatially restricted sulfotransferase activity in the developing egg chamber leads to localization of serine protease activity and ultimately to spatially specific activation of the Toll receptor in the Drosophila embryo.  相似文献   

2.
Stein D  Cho YS  Zhang Z  Stevens LM 《Fly》2008,2(4):220-228
Drosophila embryonic dorsal-ventral polarity is defined by a maternally encoded signal transduction pathway. Gastrulation Defective, Snake, and Easter comprise a serine protease cascade that operates in the perivitelline space to generate active ligand for the Toll receptor, which resides in the embryonic membrane. Toll is activated only on the ventral side of the embryo. Spatial regulation of this pathway is initiated by the ventrally restricted expression of the sulfotransferase Pipe in the follicular epithelium that surrounds the developing oocyte. Pipe is thought to modify a target molecule that is secreted and localized within the ventral region of the egg and future embryo, where it influences the activity of the pathway such that active Toll ligand is produced only ventrally. A potential substrate for Pipe is encoded by nudel, which is expressed throughout the follicle cell layer and encodes a large, multi-functional secreted protein that contains a serine protease domain as well as other structural features characteristic of extracellular matrix proteins. A previous mosaic analysis suggested that the protease domain of Nudel is not a target for Pipe activity as its expression is not required in pipe-expressing cells, but failed to rule out such a role for other functional domains of the protein. To investigate this possibility, we carried out a mosaic analysis of additional nudel alleles, including some that affect the entire protein. Our analysis demonstrated that proteolytically processed segments of Nudel are secreted into the perivitelline space and stably localized, as would be expected for the target of Pipe, However, we found no requirement for nudel to be expressed in ventral, pipe-expressing follicle cells, thereby eliminating Nudel as an essential substrate of Pipe sulfotransferase activity.  相似文献   

3.
《Fly》2013,7(4):220-228
Drosophila embryonic dorsal-ventral polarity is defined by a maternally encoded signal transduction pathway. Gastrulation Defective, Snake, and Easter comprise a serine protease cascade that operates in the perivitelline space to generate active ligand for the Toll receptor, which resides in the embryonic membrane. Toll is activated only on the ventral side of the embryo. Spatial regulation of this pathway is initiated by the ventrally restricted expression of the sulfotransferase Pipe in the follicular epithelium that surrounds the developing oocyte. Pipe is thought to modify a target molecule that is secreted and localized within the ventral region of the egg and future embryo, where it influences the activity of the pathway such that active Toll ligand is produced only ventrally. A potential substrate for Pipe is encoded by nudel, which is expressed throughout the follicle cell layer and encodes a large, multi-functional secreted protein that contains a serine protease domain as well as other structural features characteristic of extracellular matrix proteins. A previous mosaic analysis suggested that the protease domain of Nudel is not a target for Pipe activity as its expression is not required in pipe-expressing cells, but failed to rule out such a role for other functional domains of the protein. To investigate this possibility, we carried out a mosaic analysis of additional nudel alleles, including some that affect the entire protein. Our analysis demonstrated that proteolytically processed segments of Nudel are secreted into the perivitelline space and stably localized, as would be expected for the target of Pipe, However, we found no requirement for nudel to be expressed in ventral, pipe-expressing follicle cells, thereby eliminating Nudel as an essential substrate of Pipe sulfotransferase activity.  相似文献   

4.
During Drosophila embryogenesis, establishment of ventral and lateral cell fates requires spatial regulation of an extracellular serine protease cascade composed of Nudel, Gastrulation Defective (GD), Snake, and Easter. Pipe, a sulfotransferase expressed ventrally during oogenesis, sulfates secreted targets that somehow confer positive spatial input to this cascade. Nudel and GD activation are pipe-independent, while Easter activation requires pipe. The effect of pipe on Snake activation has been unknown. Here we show that Snake activation is cascade-dependent but pipe-independent. These findings support a conclusion that Snake’s activation of Easter is the first spatially regulated step in the dorsoventral protease cascade.  相似文献   

5.
LeMosy EK 《FEBS letters》2006,580(9):2269-2272
The dorsoventral axis of the Drosophila embryo is established by the activating cleavage of a signaling ligand by a serine protease, Easter, only on the ventral side of the embryo. Easter is the final protease in a serine protease cascade in which initial reaction steps appear not to be ventrally restricted, but where Easter activity is promoted ventrally through the action of a spatial cue at an unknown step in the pathway. Here, biochemical studies demonstrate that this spatial control occurs at or above the level of Easter zymogen activation, rather than through direct promotion of Easter's catalytic activity against the signaling ligand.  相似文献   

6.
A common motif found in invertebrate serine proteases involved in immunity and development is the clip domain, proposed to regulate catalytic activity or protein-protein interactions within proteolytic cascades. Snake functions in a cascade that patterns the Drosophila embryo, and provides an accessible model for exploring the structural requirements for clip domain function. We tested Snake zymogens bearing charged-to-alanine mutations in the clip domain for their ability to rescue embryos lacking endogenous Snake and for their interactions by S2 cell co-transfection with upstream Gastrulation Defective and downstream Easter in the protease cascade. Of 13 single and multiple substitutions, one double mutant in a predicted protruding region exhibited a severe defect in embryonic rescue but showed only minimal defects in the co-transfection assay. We discuss implications of these and other results for potential biological roles of the Snake clip domain and for use of the in vitro assay in predicting protease behavior.  相似文献   

7.
The Toll receptor was originally identified as an indispensable molecule for Drosophila embryonic development and subsequently as an essential component of innate immunity from insects to humans. Although in Drosophila the Easter protease processes the pro-Sp?tzle protein to generate the Toll ligand during development, the identification of the protease responsible for pro-Sp?tzle processing during the immune response has remained elusive for a decade. Here, we report a protease, called Sp?tzle-processing enzyme (SPE), required for Toll-dependent antimicrobial response. Flies with reduced SPE expression show no noticeable pro-Sp?tzle processing and become highly susceptible to microbial infection. Furthermore, activated SPE can rescue ventral and lateral development in embryos lacking Easter, showing the functional homology between SPE and Easter. These results imply that a single ligand/receptor-mediated signaling event can be utilized for different biological processes, such as immunity and development, by recruiting similar ligand-processing proteases with distinct activation modes.  相似文献   

8.
Three serine protease zymogens, Gastrulation defective (GD), Snake (Snk) and Easter (Ea), and a nerve growth factor-like growth factor ligand precursor, Spaetzle, are required for specification of dorsal- ventral cell fate during Drosophila embryogenesis. The proteases have been proposed to function in a sequential activation cascade within the extracellular compartment called the perivitelline space. We examined biochemical interactions between these four proteins using a heterologous co-expression system. The results indicate that the three proteases do function in a sequential activation cascade, that GD becomes active and initiates the cascade and that interaction between GD and Snk is sufficient for GD to cleave itself autoproteolytically. The proteolytically active form of Ea cleaves GD at a different position, revealing biochemical feedback in the pathway. Both GD and Snk bind to heparin-Sepharose, providing a link between the pipe-defined ventral prepattern and the protease cascade. Our results suggest a model of the cascade in which initiation is by relief from inhibition, and spatial regulation of activity is due to interaction with sulfated proteoglycans.  相似文献   

9.
10.
11.
Three-dimensional models of the catalytic domains of Nudel (Ndl), Gastrulation Defective (Gd), Snake (Snk), and Easter (Ea), and their complexes with substrate suggest a possible organization of the enzyme cascade controlling the dorsoventral fate of the fruit fly embryo. The models predict that Gd activates Snk, which in turn activates Ea. Gd can be activated either autoproteolytically or by Ndl. The three-dimensional models of each enzyme-substrate complex in the cascade rationalize existing mutagenesis data and the associated phenotypes. The models also predict unanticipated features like a Ca(2+) binding site in Ea and a Na(+) binding site in Ndl and Gd. These binding sites are likely to play a crucial role in vivo as suggested by mutant enzymes introduced into embryos as mRNAs. The mutations in Gd that eliminate Na(+) binding cause an apparent increase in activity, whereas mutations in Ea that abrogate Ca(2+) binding result in complete loss of activity. A mutation in Ea predicted to introduce Na(+) binding results in apparently increased activity with ventralization of the embryo, an effect not observed with wild-type Ea mRNA.  相似文献   

12.
The development of the head and tail regions of the Drosophila embryo is dependent upon the localized polar activation of Torso (Tor), a receptor tyrosine kinase that is uniformly distributed in the membrane of the developing embryo. Trunk (Trk), the proposed ligand for Tor, is secreted as an inactive precursor into the perivitelline fluid that lies between the embryonic membrane and the vitelline membrane (VM), the inner layer of the eggshell. The spatial regulation of Trk processing is thought to be mediated by the secreted product of the torsolike (tsl) gene, which is expressed during oogenesis by a specialized population of follicle cells present at the two ends of the oocyte. We show here that Tsl protein is specifically localized to the polar regions of the VM in laid eggs. We further demonstrate that although Tsl can associate with nonpolar regions of the VM, the activity of polar-localized Tsl is enhanced, suggesting the existence of another spatially restricted factor acting in this pathway. The incorporation of Tsl into the VM provides a mechanism for the transfer of spatial information from the follicle cells to the developing embryo. To our knowledge, Tsl represents the first example of an embryonic patterning determinant that is a component of the eggshell.  相似文献   

13.
Morphogen gradients pattern tissues and organs during development. When morphogen production is spatially restricted, diffusion and degradation are sufficient to generate sharp concentration gradients. It is less clear how sharp gradients can arise within the source of a broadly expressed morphogen. A recent solution relies on localized production of an inhibitor outside the domain of morphogen production, which effectively redistributes (shuttles) and concentrates the morphogen within its expression domain. Here, we study how a sharp gradient is established without a localized inhibitor, focusing on early dorsoventral patterning of the Drosophila embryo, where an active ligand and its inhibitor are concomitantly generated in a broad ventral domain. Using theory and experiments, we show that?a sharp?Toll activation gradient is produced through "self-organized shuttling," which dynamically relocalizes inhibitor production to lateral regions, followed by inhibitor-dependent ventral shuttling of the activating ligand Sp?tzle. Shuttling may represent?a general paradigm for patterning early embryos. PAPERFLICK:  相似文献   

14.
Dorsoventral polarity of the Drosophila embryo is established by a signal transduction pathway in which the maternal transmembrane protein Toll appears to function as the receptor for a ventrally localized extracellular ligand. Certain dominant Toll alleles encode proteins that behave as partially ligand-independent receptors, causing embryos containing these proteins to become ventralized. In extracts of embryos derived from mothers carrying these dominant alleles, we detected a polypeptide of approximately 35 kDa in addition to full-length Toll polypeptides with antibodies to Toll. Our biochemical analyses suggest that the smaller polypeptide is a truncated form of Toll lacking extracellular domain sequences. To assay the biological activity of such a shortened form of Toll, we synthesized RNA encoding a mutant polypeptide lacking the leucine-rich repeats that comprise most of Toll's extracellular domain and injected this RNA into embryos. The truncated Toll protein elicited the most ventral cell fate independently of the wild-type Toll protein and its ligand. These results support the view that Toll is a receptor whose extracellular domain regulates the intrinsic signaling activity of its cytoplasmic domain.  相似文献   

15.
The restriction of Pipe, a potential glycosaminoglycan-modifying enzyme, to ventral follicle cells of the egg chamber is essential for dorsoventral axis formation in the Drosophila embryo. pipe repression depends on the TGFalpha-like ligand Gurken, which activates the Drosophila EGF receptor in dorsal follicle cells. An analysis of Raf mutant clones shows that EGF signalling is required cell-autonomously in all dorsal follicle cells along the anteroposterior axis of the egg chamber to repress pipe. However, the autoactivation of EGF signalling important for dorsal follicle cell patterning has no influence on pipe expression. Clonal analysis shows that also the mirror-fringe cassette suggested to establish a secondary signalling centre in the follicular epithelium is not involved in pipe regulation. These findings support the view that the pipe domain is directly delimited by a long-range Gurken gradient. Pipe induces ventral cell fates in the embryo via activation of the Sp?tzle/Toll pathway. However, large dorsal patches of ectopic pipe expression induced by Raf clones rarely affect embryonic patterning if they are separated from the endogenous pipe domain. This indicates that potent inhibitory processes prevent pipe dependent Toll activation at the dorsal side of the egg.  相似文献   

16.
An extracellular serine protease cascade generates the ligand that activates the Toll signaling pathway to establish dorsoventral polarity in the Drosophila embryo. We show here that this cascade is regulated by a serpin-type serine protease inhibitor, which plays an essential role in confining Toll signaling to the ventral side of the embryo. This role is strikingly analogous to the function of the mammalian serpin antithrombin in localizing the blood-clotting cascade, suggesting that serpin inhibition of protease activity may be a general mechanism for achieving spatial control in diverse biological processes.  相似文献   

17.
D Stein  C Nüsslein-Volhard 《Cell》1992,68(3):429-440
Twelve maternal effect genes (the dorsal group and cactus) are required for the establishment of the embryonic dorsal-ventral axis in the Drosophila embryo. Embryonic dorsal-ventral polarity is defined within the perivitelline compartment surrounding the embryo by the ventral formation of a ligand for the Toll receptor. Here, by transplantation of perivitelline fluid we demonstrate the presence of three separate activities present in the perivitelline fluid that can restore dorsal-ventral polarity to mutant easter, snake, and sp?tzle embryos, respectively. These activities are not capable of defining the polarity of the dorsal-ventral axis; instead they restore structures according to the intrinsic dorsal-ventral polarity of the mutant embryos. They appear to be involved in the ventral formation of a ligand for the Toll protein. This process requires serine proteolytic activity; the injection of serine protease inhibitors into the perivitelline space of wild-type embryos results in the formation of dorsalized embryos.  相似文献   

18.
The Drosophila melanogaster Toll receptor controls embryonic dorsal-ventral axis formation and is crucial for the innate immune response. In both cases, Toll is activated by the enzymatically cleaved form of its ligand Sp?tzle (Spz). During axis formation, Spz is cleaved by the maternally provided serine protease Easter while the Sp?tzle-processing enzyme (SPE) activates Spz after infection. We confirm the role of SPE in immunity and show that it is a zygotic gene specifically expressed in immune tissues implying that the dual activation of Spz is achieved by differential spatiotemporal expression of two similar but distinct serine proteases.  相似文献   

19.
Twelve maternal effect loci are required for the production of Drosophila embryos with a correct dorsoventral axis. Analysis of mosaic females indicates that the expression of the genes nudel, pipe, and windbeutel is required in the somatic tissue, presumably in the follicle cells that surround the oocyte. Thus, information coming from outside the egg cell influences dorsoventral pattern formation during embryogenesis. In transplantation experiments, the perivitelline fluid from the compartment surrounding the embryo can restore dorsoventral pattern to embryos from females mutant for nudel, pipe, or windbeutel. The positioning of the transplanted pervitelline fluid also determines the polarity of the restored dorsoventral axis. We propose that the polarizing activity, normally present at the ventral side of the egg, is a ligand for the Toll receptor. Presumably, local activation of the Toll protein by the ligand initiates the formation of the nuclear concentration gradient of the dorsal protein, thereby determining dorsoventral pattern.  相似文献   

20.
The Drosophila gene nudel may encode a spatially restricted serine protease involved in producing the ligand for the receptor Toll and linking dorsal–ventral polarity in the egg chamber to the developing embryonic axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号