首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cdk5 phosphorylates p53 and regulates its activity   总被引:2,自引:0,他引:2  
  相似文献   

2.
Cyclin-dependent kinase-5 (cdk5)/p35 and protein phosphatase-1 (PP1) are two major enzymes that control a variety of physiological processes within the nervous system including neuronal differentiation, synaptic plasticity and axonal transport. Defective cdk5/p35 and PP1 function are also implicated in several major human neurodegenerative diseases. Cdk5/p35 and the catalytic subunit of PP1 (PP1C) both bind to the brain-enriched, serine-threonine kinase lemur tyrosine kinase-2 (LMTK2). Moreover, LMTK2 phosphorylates PP1C on threonine-320 (PP1Cthr32?) to inhibit its activity. Here, we demonstrate that LMTK2 is phosphorylated on serine-1418 (LMTK2ser1?1?) by cdk5/p35 and present evidence that this regulates its ability to phosphorylate PP1Cthr32?. We thus describe a new signalling pathway within the nervous system that links cdk5/p35 with PP1C and which has implications for a number of neuronal functions and neuronal dysfunction.  相似文献   

3.
4.
The Swe1/Wee1 kinase phosphorylates and inhibits Cdk1-Clb2 and is a major mitotic switch. Swe1 levels are controlled by ubiquitin mediated degradation, which is regulated by interactions with various mitotic kinases. We have recently reported that Swe1 levels are capable of sensing the progress of the cell cycle by measuring the levels of Cdk1-Clb2, Cdc5 and Hsl1. We report here a novel mechanism that regulates the levels of Swe1. We show that S. cerevisiae Swe1 is modified by Smt3/SUMO on residue K594 in a Cdk1 dependant manner. A degradation of the swe1(K594R) mutant that cannot be modified by Smt3 is considerably delayed in comparison to wild type Swe1. Swe1(K594R) cells express elevated levels of Swe1 protein and demonstrate higher levels of Swe1 activity as manifested by Cdk1-Y19 phosphorylation. Interestingly this mutant is not targeted, like wild type Swe1, to the bud neck where Swe1 degradation takes place. We show that Swe1 is SUMOylated by the Siz1 SUMO ligase, and consequently siz1Δ cells express elevated levels of Swe1 protein and activity. Finally we show that swe1(K594R) cells are sensitive to osmotic stress, which is in line with their compromised regulation of Swe1 degradation.  相似文献   

5.
6.
7.
8.
Cdk1 was proposed to compensate for the loss of Cdk2. Here we present evidence that this is possible due to premature translocation of Cdk1 from the cytoplasm to the nucleus in the absence of Cdk2. We also investigated the consequence of loss of Cdk2 on the maintenance of the G1/S DNA damage checkpoint. Cdk2(-/-) mouse embryonic fibroblasts in vitro as well as regenerating liver cells after partial hepatectomy (PH) in Cdk2(-/-) mice, arrest promptly at the G1/S checkpoint in response to gamma-irradiation due to activation of p53 and p21 inhibiting Cdk1. Furthermore re-entry into S phase after irradiation was delayed in Cdk2(-/-) cells due to prolonged and impaired DNA repair activity. In addition, Cdk2(-/-) mice were more sensitive to lethal irradiation compared to wild-type and displayed delayed resumption of DNA replication in regenerating liver cells. Our results suggest that the G1/S DNA damage checkpoint is intact in the absence of Cdk2, but Cdk2 is important for proper repair of the damaged DNA.  相似文献   

9.
10.
11.
Families of cyclin-like proteins have emerged that bind and activate cyclin dependent kinases (Cdk)s, directing the phosphorylation of noncanonical Cdk substrates. One of these proteins, Spy1, has demonstrated the unique ability to directly bind and activate both Cdk1 and Cdk2, as well as binding and promoting the degradation of at least one Cdk inhibitor, p27Kip1. Spy1 accelerates somatic cell growth and proliferation and is implicated in a number of human cancers including the breast, brain and liver. Herein we isolate key residues mediating the direct interaction with p27. We use mutants of Spy1 to determine the physiological role of direct interactions with distinct binding partners Cdk2 and p27. We demonstrate that disrupting the direct interaction with either Spy1 binding partner decreased endogenous activity of Cdk2, as well as Spy1-mediated proliferation. However, only the direct interaction with p27 was essential for Spy1-mediated effects on p27 stability. In vivo neither mutation completely prevented tumorigenesis, although each mutation slowed the rate of Spy1-mediated tumorigenesis and decreased overall tumor volumes. This work supports the conclusion that direct interaction with both p27 and Cdk2 contribute to Spy1-mediated effects on cell growth. It is important to elucidate the dynamics of these interactions and to consider these data when assessing functional outcomes.  相似文献   

12.
Nuclear pore complexes (NPCs) form channels across the nuclear envelope and provide the sole sites of molecular exchange between the cytoplasm and nucleoplasm. The NPC is a target of a number of post-translational modifications, including phosphorylation, yet the functions of these modifications are ill defined. Here, we have investigated the mitotic specific phosphorylation of a yeast nucleoporin Nup53p. Two kinases were identified that phosphorylate Nup53p: the mitotic kinase Cdk1p/Cdc2p/Cdc28p and the casein kinase Hrr25p. Hrr25p was identified by screening 119 yeast kinases for their ability to phosphorylate Nup53p in vitro. Conditional alleles of Hrr25p support the conclusion that Hrr25p phosphorylates Nup53p in vivo. We further demonstrated using solution binding and affinity purification assays, that Hrr25p directly binds Nup53p in an interaction that is destabilized by the phosphorylation of Nup53p. Consistent with this observation, we observed that Hrr25p moves between distinct locations in the cell during the cell cycle including the nucleus, the cortex of the emerging bud and the spindle pole bodies. Cdk1p also contributes to Nup53p phosphorylation as specific inhibition of Cdk1p or mutation of Cdk1p consensus sites partially blocked its phosphorylation. The ability of nup53 alleles containing Cdk1p site mutations to complement synthetic defects of nup53 Delta nup170 Delta strains is linked to a function for Nup53p in the spindle assembly checkpoint.  相似文献   

13.
The pro-apoptotic function of p53 has been well defined in preventing genomic instability and cell transformation. However, the intriguing fact that p53 contributes to a pro-survival advantage of tumor cells under DNA damage conditions raises a critical question in radiation therapy for the 50% human cancers with intact p53 function. Herein, we reveal an anti-apoptotic role of mitochondrial p53 regulated by the cell cycle complex cyclin B1/Cdk1 in irradiated human colon cancer HCT116 cells with p53+/+ status. Steady-state levels of p53 and cyclin B1/Cdk1 were identified in the mitochondria of many human and mouse cells, and their mitochondrial influx was significantly enhanced by radiation. The mitochondrial kinase activity of cyclin B1/Cdk1 was found to specifically phosphorylate p53 at Ser-315 residue, leading to enhanced mitochondrial ATP production and reduced mitochondrial apoptosis. The improved mitochondrial function can be blocked by transfection of mutant p53 Ser-315-Ala, or by siRNA knockdown of cyclin B1 and Cdk1 genes. Enforced translocation of cyclin B1 and Cdk1 into mitochondria with a mitochondrial-targeting-peptide increased levels of Ser-315 phosphorylation on mitochondrial p53, improved ATP production and decreased apoptosis by sequestering p53 from binding to Bcl-2 and Bcl-xL. Furthermore, reconstitution of wild-type p53 in p53-deficient HCT116 p53−/− cells resulted in an increased mitochondrial ATP production and suppression of apoptosis. Such phenomena were absent in the p53-deficient HCT116 p53−/− cells reconstituted with the mutant p53. These results demonstrate a unique anti-apoptotic function of mitochondrial p53 regulated by cyclin B1/Cdk1-mediated Ser-315 phosphorylation in p53-wild-type tumor cells, which may provide insights for improving the efficacy of anti-cancer therapy, especially for tumors that retain p53.  相似文献   

14.
15.
NIRF is a RING finger protein with a ubiquitin-like domain, a PHD finger, a YDG/SRA domain, and a RING finger domain. Previous study showed that NIRF is a nuclear protein expressed in association with cell proliferation. In this study, we further characterized NIRF functions in cell cycle regulation. Flow cytometric analysis showed that overexpression of NIRF induced an increase in G1 phase cells. Immunoprecipitation and immunoblotting experiments showed that NIRF bound to the inactive Cdk2-cyclin E complex. There existed phosphorylated NIRF in cells, and dephosphorylated NIRF interacted with Cdk2. NIRF was phosphorylated by Cdk2 in vitro. These results suggest that NIRF may participate in the G1/S transition regulation.  相似文献   

16.
Yuan L  Tian C  Wang H  Song S  Li D  Xing G  Yin Y  He F  Zhang L 《EMBO reports》2012,13(4):363-370
The KRAB-type zinc-finger protein Apak was recently identified as a negative regulator of p53-mediated apoptosis. However, the mechanism of this selective regulation is not fully understood. Here, we show that Apak recognizes the TCTTN2−30TTGT consensus sequence through its zinc-fingers. This sequence is specifically found in intron 1 of the proapoptotic p53 target gene p53AIP1 and largely overlaps with the p53-binding sequence. Apak competes with p53 for binding to this site to inhibit p53AIP1 expression. Upon DNA damage, Apak dissociates from the DNA, which abolishes its inhibitory effect on p53-mediated apoptosis.  相似文献   

17.
Recently we demonstrated, using normal human fibroblasts (NHFs), that UVc radiation induces a G2/M arrest which was even more pronounced when p53 expression was inhibited. So, the aim of this study was to evaluate in NHFs the relationship between UV-induced G2/M arrest and cyclin B1 regulation and to investigate if p53 could contribute to the cyclin B1 regulation in these conditions. Following exposure of asynchronous NHFs to UV light, we showed that the induced G2/M arrest was accompanied by a dose-dependent down-regulation of cyclin B1 mRNA as evaluated by RT-PCR. Concomitantly, using flow cytometric analysis, we observed a strong accumulation of cyclin B1 protein which was correlated to the apparition of the G2/M arrest. In order to study the contribution of p53 to the cyclin B1 accumulation in response to UV exposure, we inhibited p53 induction using p53 antisense oligonucleotides. We found that the inhibition of p53 protein induction after UV exposure had no effect on the level of cyclin B1 mRNA. Moreover, although inhibition of p53 protein induction increased the number of the cells in the G2-M phase, the mean content of cyclin B1 protein was not augmented in these cells. These results indicate clearly that the induction of p53 protein following UV exposure does not regulate the level of cyclin B1 mRNA or protein in normal cells.  相似文献   

18.
《Life sciences》1996,60(2):PL39-PL44
Ginsenoside Rh2, a plant glycoside with a dammarane skeleton resembling a steroid skeleton as an aglycone, has anticancer potentials in vitro or in vivo. To elucidate the molecular mechanisms of the effects of Rh2, we have examined the Cyclin-dependent kinase-2 (Cdk2) activity in G1 arrested B16 melanoma cells and in S phase-arrested Meth-A sarcoma cells, that have been treated with Rh2. The kinase activity was suppressed in B16 cells but not in Meth-A cells. In addition, Rh2 was found to induce G1 arrest and concomitantly suppress the Cdk2 activity in carcinogen-susceptible BALB/c 3T3 A31-1-1 and A31-1-13 cell lines. Thus, Rh2 has a G1 phasespecific suppressive effect on the Cdk2 activity, supporting further evaluation of Rh2 and its related compounds in cancer chemoprevention studies.  相似文献   

19.
This study investigates molecular mechanisms underlying cell cycle arrest when cells are exposed to high levels of oxygen (hyperoxia). Hyperoxia has previously been shown to increase expression of the cell cycle regulators p53 and p21. In the current study, we found that p53-deficient human lung adenocarcinoma H1299 cells failed to induce p21 or growth arrest in G(1) when exposed to 95% oxygen. Instead, cells arrested in S and G(2). Stable expression of p53 restored induction of p21 and G(1) arrest without affecting mRNA expression of the other Cip or INK4 G(1) kinase inhibitors. To confirm the role of p21 in G(1) arrest, we created H1299 cells with tetracycline-inducible expression of enhanced green fluorescent protein (EGFP), EGFP fused to p21 (EGFp21), or EGFP fused to p27 (EGFp27), a related cell cycle inhibitor. The amino terminus of p21 and p27 bind cyclin-dependent kinases (Cdk), whereas the carboxy terminus of p21 binds the sliding clamp proliferating cell nuclear antigen (PCNA). EGFp21 or EGFp27, but not EGFP by itself, restored G(1) arrest during hyperoxia. When separately overexpressed, the amino-terminal Cdk and carboxy-terminal PCNA binding domains of p21 each prevented cells from exiting G(1) during exposure. These findings demonstrate that exposure in vitro to hyperoxia exerts G(1) arrest through p53-dependent induction of p21 that suppresses Cdk and PCNA activity. Because PCNA also participates in DNA repair, these results raise the possibility that p21 also affects repair of oxidized DNA.  相似文献   

20.
A series of studies published in 2003 has challenged the essentiality of Cdk2. A recently published work indicates that cyclin E-Cdk1 compensates for Cdk2’s function at G1/S transition in Cdk2-/- Mefs. In this study, we uncovered a redundant mechanism between Cdk1 and Cdk2 at G2 in multiple cancer cell lines. When either Cdk2 or Cdk1 is ablated using RNAi, there were complex shifts of cyclin A towards its reciprocal partner, i.e., when Cdk2 is ablated, cyclin A redistributes to Cdk1; when Cdk1 is ablated, cyclin A forms more abundant complexes with Cdk2. Further, cyclin B redistributes to Cdk2 upon Cdk1 knockdown. These redistributions bring about increased kinase activities of corresponding complexes. Elimination of the compensatory mechanism by knockdown of both Cdk1 and Cdk2 using RNAi reveals phenotypes at G2 phase. The results suggest that the redistributed complexes contribute to the cyclin B-Cdk1 activation when either Cdk1 or Cdk2 alone is ablated and this redundancy masks Cdk2’s role when Cdk2 is singly ablated. It is also worth noting that the predominant G2 arrest described here, unlike those Cdk1-Cdk2 double ablated Mefs, raises a question of whether different Cdk activities are required for G1/S or G2/M progression in normal vs. cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号