首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stem cells in adult organism are responsible for cell turnover and tissue regeneration. The study of stem cell stress response contributes to our knowledge on the mechanisms of damaged tissue repair. Previously, we demonstrated that sublethal heat shock (HS) induced apoptosis in human embryonic stem cells. This study aimed to investigate HS response of human adult stem cells. Human mesenchymal stem cells (MSCs) cultivated in vitro were challenged with sublethal HS. It was found that sublethal HS did not affect the cell viability assessed by annexin V/propidium staining. However, MSCs subjected to severe HS exhibited features of stress-induced premature senescence (SIPS): irreversible cell cycle arrest, altered morphology, increased expression of senescence-associated β-galactosidase (SA-β-gal) activity, and induction of cyclin-dependent kinase inhibitor p21 protein. High level of Hsp70 accumulation induced by sublethal HS did not return to the basal level, at least, after 72 h of the cell recovery when most cells exhibited SIPS hallmarks. MSCs survived sublethal HS, and resumed proliferation sustained the properties of parental MSCs: diploid karyotype, replicative senescence, expression of the cell surface markers, and capacity for multilineage differentiation. Our results showed for the first time that in human MSCs, sublethal HS induced premature senescence rather than apoptosis or necrosis. MSC progeny that survived sublethal HS manifested stem cell properties of the parental cells: limited replicative life span and multilineage capacity.  相似文献   

3.
4.
Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.  相似文献   

5.
Sublethal doses of surfactants as exemplified by NP-40 clearly induce premature senescence in normal human cells. To understand molecular basis for this phenomenon, we tried to suppress it with use of various inhibitors. An inhibitor of p38 of the MAPK family almost completely suppressed growth arrest and morphological changes induced by surfactants; however, other inhibitors tested had no effect. Oleic acid, a weak inducer of premature senescence, was found to suppress the effect of NP-40. Fluorescein-labeled oleic acid rapidly bound to the cell surface, and this binding was clearly blocked by pre-treatment with surfactants, suggesting that surfactants and oleic acid compete for binding to the cell surface. Moderate concentrations of cycloheximide, an inhibitor of protein synthesis, also suppressed the senescent features induced by NP-40. These results suggest that surfactants activate p38 signaling pathway by binding to the cell surface, and induce cellular senescence.  相似文献   

6.
Considerable hope surrounds the use of disease-specific pluripotent stem cells to generate models of human disease allowing exploration of pathological mechanisms and search for new treatments. Disease-specific human embryonic stem cells were the first to provide a useful source for studying certain disease states. The recent demonstration that human somatic cells, derived from readily accessible tissue such as skin or blood, can be converted to embryonic-like induced pluripotent stem cells (hiPSCs) has opened new perspectives for modelling and understanding a larger number of human pathologies. In this review, we examine the opportunities and challenges for the use of disease-specific pluripotent stem cells in disease modelling and drug screening. Progress in these areas will substantially accelerate effective application of disease-specific human pluripotent stem cells for drug screening.  相似文献   

7.
Embryonic stem cells (ESC) are able to self-renew and to differentiate into any cell type. To escape error transmission to future cell progeny, ESC require robust mechanisms to ensure genomic stability. It was stated that stress defense of mouse and human ESC against oxidative stress and irradiation is superior compared with differentiated cells. Here, we investigated heat shock response of human ESC (hESC) and their differentiated progeny. Fibroblast-like cells were generated by spontaneous hESC differentiation via embryoid bodies. Like normal human diploid fibroblasts, these cells have a finite lifespan in culture, undergo replicative senescence and die. We found that sublethal heat shock affected survival of both cell types, but in hESC it induced apoptosis, whereas in differentiated cells it produced cell cycle arrest and premature senescence phenotype. Heat shock survived hESC and differentiated cells restored the properties of initial cells. Heated hESC progeny exhibited pluripotent markers and the capacity to differentiate into the cells of three germ layers. Fibroblast-like cells resisted heat shock, proliferated for a limited number of passages and entered replicative senescence as unheated parental cells. Taken together, these results show for the first time that both hESC and their differentiated derivatives are sensitive to heat shock, but the mechanisms of their stress response are different: hESC undergo apoptosis, whereas differentiated cells under the same conditions exhibit stress-induced premature senescence (SIPS) phenotype. Both cell types that survived sublethal heat shock sustain parental cell properties.  相似文献   

8.
Embryonic stem cells (ESC) are able to self-renew and to differentiate into any cell type. To escape error transmission to future cell progeny, ESC require robust mechanisms to ensure genomic stability. It was stated that stress defense of mouse and human ESC against oxidative stress and irradiation is superior compared with differentiated cells. Here, we investigated heat shock response of human ESC (hESC) and their differentiated progeny. Fibroblast-like cells were generated by spontaneous hESC differentiation via embryoid bodies. Like normal human diploid fibroblasts, these cells have a finite lifespan in culture, undergo replicative senescence and die. We found that sublethal heat shock affected survival of both cell types, but in hESC it induced apoptosis, whereas in differentiated cells it produced cell cycle arrest and premature senescence phenotype. Heat shock survived hESC and differentiated cells restored the properties of initial cells. Heated hESC progeny exhibited pluripotent markers and the capacity to differentiate into the cells of three germ layers. Fibroblast-like cells resisted heat shock, proliferated for a limited number of passages and entered replicative senescence as unheated parental cells. Taken together, these results show for the first time that both hESC and their differentiated derivatives are sensitive to heat shock, but the mechanisms of their stress response are different: hESC undergo apoptosis, whereas differentiated cells under the same conditions exhibit stress-induced premature senescence (SIPS) phenotype. Both cell types that survived sublethal heat shock sustain parental cell properties.  相似文献   

9.
DNA DSBs are induced by IR or radiomimetic drugs such as doxorubicin. It has been indicated that cells from ataxia-telangiectasia patients are highly sensitive to radiation due to defects in DNA repair, but whether they have impairment in apoptosis has not been fully elucidated. A-T cells showed increased sensitivity to high levels of DNA damage, however, they were more resistant to low doses. Normal cells treated with combination of KU55933, a specific ATM kinase inhibitor, and doxorubicin showed increased resistance as they do in a similar manner to A-T cells. A-T cells have higher viability but more DNA breaks, in addition, the activations of p53 and apoptotic proteins (Bax and caspase-3) were deficient, but Akt expression was enhanced. A-T cells subsequently underwent premature senescence after treatment with a low dose of doxorubicin, which was confirmed by G2 accumulation, senescent morphology, and SA-β-gal positive until 15 days repair incubation. Finally, A-T cells are radio-resistant at low doses due to its defectiveness in detecting DNA damage and apoptosis, but the accumulation of DNA damage leads cells to premature senescence.  相似文献   

10.
11.
Embryonic stem cells (ESC) are self-renewal and pluripotent cells that are able to differentiate in vitro into several cell types in favourable conditions. Technical protocols for in vitro gametes production have been developed in mice and human species. The functionality of such differentiated cells is not always analysed and an early meiotic arrest is a current observation. These kinds of experimentations have also been tested from human induced pluripotent stem cells (IPSC). However, differentiation ends shortly at the primordial germ cell stage.  相似文献   

12.
Mitochondrial diseases are rare diseases most often linked to energy in the form of ATP-depletion. The high number of nuclear- and mitochondrial-DNA-encoded proteins (>500), required for ATP production and other crucial mitochondrial functions such as NADH re-oxidation, explains the increasing number of reported disorders. In recent years, yeast has revealed to be a powerful model to identify responsible genes, to study primary effects of pathogenic mutations and to determine the molecular mechanisms leading to mitochondrial disorders. However, the clinical management of patients with mitochondrial disorders is still essentially supportive. Here we review some of the most fruitful yeast mitochondrial disorder models and propose to subject these models to highthroughput chemical library screening to prospect new therapeutic drugs against mitochondrial diseases.  相似文献   

13.
Human mesenchymal stem cells (hMSCs) may be used for therapeutic applications. Culture conditions such as the serum source may impact on cell quality and the onset of replicative senescence. We have examined the effect of culturing hMSCs in autologous serum (AS) versus fetal bovine serum (FBS) on factors involved in in vitro replicative senescence. hMSCs from four donors were cultured in 10% FBS or 10% AS until they reached senescence. Cells were harvested at early passage and near senescence to study factors known to be involved in cellular senescence. The number of population doublings till senescence was similar for cells cultured in FBS, but varied greatly for hMSCs cultured in AS. FBS cells accumulated in S phase of cell cycle. This could not be explained by increased expression of cell cycle inhibitor proteins. Heat shock proteins were upregulated in AS compared to FBS cells. Reactive oxygen species and nitric oxide were upregulated in senescent FBS cells. Telomeres were shorter in senescent cells, more significantly in FBS cells. The source of serum was a determinant for the time till senescence in cultured hMSC. Serum source affected aspects of cell cycle regulation and the levels of heat shock proteins. Several mechanisms are likely to be responsible for replicative senescence in hMSC. Insight into the molecular details of how serum factors impacts on these mechanisms is important for the safe use of hMSCs in clinical applications.  相似文献   

14.
Human epithelial stem cells (ESCs) are characterized by long‐term regenerative properties, much dependent on the tissue of origin and varying during their lifespan. We analysed such variables in cultures of ESCs isolated from the skin, conjunctiva, limbus and oral mucosa of healthy donors and patients affected by ectrodactyly‐ectodermal dysplasia‐clefting syndrome, a rare genetic disorder caused by mutations in the p63 gene. We cultured cells until exhaustion in the presence or in the absence of DAPT (γ‐secretase inhibitor; N‐[N‐(3, 5‐difluorophenacetyl)‐L‐alanyl]‐S‐phenylglycine T‐butyl ester). All cells were able to differentiate in vitro but exhibited variable self‐renewal potential. In particular, cells carrying p63 mutations stopped prematurely, compared with controls. Importantly, administration of DAPT significantly extended the replicative properties of all stem cells under examination. RNA sequencing analysis revealed that distinct sets of genes were up‐ or down‐regulated during their lifetime, thus allowing to identify druggable gene networks and off‐the‐shelf compounds potentially dealing with epithelial stem cell senescence. These data will expand our knowledge on the genetic bases of senescence and potentially pave the way to the pharmacological modulation of ageing in epithelial stem cells.  相似文献   

15.
Multi-drug resistance due in part to membrane pumps such as P-glycoprotein (Pgp) is a major clinical problem in human cancers. We tested the ability of liposomally-encapsulated daunorubicin (DR) to overcome resistance to this drug. A widely used breast carcinoma cell line originally selected for resistance in doxorubicin (MCF7ADR) was 4-fold resistant to DR compared to the parent MCF7 cells (IC50 79 nM vs. 20 nM). Ovarian carcinoma cells (SKOV3) were made resistant by retroviral transduction of MDR1 cDNA and selection in vinblastine. The resulting SKOV3MGP1 cells were 130-fold resistant to DR compared to parent cells (IC50 5700 nM vs. 44 nM). Small-cell lung carcinoma cells (H69VP) originally selected for resistance to etoposide were 6-fold resistant to DR compared to H69 parent cells (IC50 180 nM vs. 30 nM). In all three cases, encapsulation of DR in liposomes as Daunoxome (Gilead) did not change the IC50 of parent cells relative to free DR. However, liposomal DR overcame resistance in MCF7ADR breast carcinoma cells (IC50 20 nM), SKOV3MGP1 ovarian carcinoma cells (IC50 237 nM) and H69VP small-cell lung carcinoma cells (IC50 27 nM). Empty liposomes did not affect the IC50 for free DR in the three resistant cell lines, nor did empty liposomes affect the IC50 for other drugs that are part of the multi-drug resistance phenotype (etoposide, vincristine) in lung carcinoma cells. These data indicate the possible value of liposomal DR in overcoming Pgp-mediated drug resistance in human cancer.  相似文献   

16.
Here we describe a protocol for generating 3D human intestinal tissues (called organoids) in vitro from human pluripotent stem cells (hPSCs). To generate intestinal organoids, pluripotent stem cells are first differentiated into FOXA2(+)SOX17(+) endoderm by treating the cells with activin A for 3 d. After endoderm induction, the pluripotent stem cells are patterned into CDX2(+) mid- and hindgut tissue using FGF4 and WNT3a. During this patterning step, 3D mid- or hindgut spheroids bud from the monolayer epithelium attached to the tissue culture dish. The 3D spheroids are further cultured in Matrigel along with prointestinal growth factors, and they proliferate and expand over 1-3 months to give rise to intestinal tissue, complete with intestinal mesenchyme and epithelium comprising all of the major intestinal cell types. To date, this is the only method for efficiently directing the differentiation of hPSCs into 3D human intestinal tissue in vitro.  相似文献   

17.
Unlike other normal cells, a subpopulation of cells often termed as “stem cells” are long-lived and generate cellular progeny throughout life. Cancer stem cells (CSCs) are rare immortal cells within a tumor that can both self-renew by dividing and giving rise to many cell types that constitute the tumor. CSCs also have been shown to be involved in fundamental processes of cell proliferation and metastatic dissemination. CSCs are generally resistant to chemotherapy and radiotherapy, a subset of remaining CSCs after therapy can survive and promote cancer relapse and resistance to therapies. Understanding the biological characteristics of CSCs, the pathways leading to their sustainability and proliferation, and the CSCs role in drug resistance is crucial for establishing novel tumor diagnostic and therapeutic strategies. In this review, we address the pathways that regulate CSCs, the role of CSCs in the resistance to therapy, and strategies to overcome therapeutic resistance.  相似文献   

18.
近年来多能干细胞(PSCs)的体外培养与分化技术发展迅速,并广泛应用于再生医学和发育生物学等领域。PSCs能够在体外神经诱导的条件下分化为类神经管模型,这为探索体内早期神经发育与中枢神经系统发育疾病的形成机制提供了全新的实验平台。本文总结了近年来应用小鼠和人PSCs建立体外类神经管模型的研究进展,其中体外模型主要包括在不同培养体系下诱导获得的二维(2D)与三维(3D)类神经管模型,并针对早期类神经管模型在神经系统发育性疾病机制研究中的前景和挑战作进一步探讨,同时为疾病预防和治疗提供新的思路。  相似文献   

19.
Drug-induced liver injury is a common reason for drug attrition in late clinical phases, and even for post-launch withdrawals. As a consequence, there is a broad consensus in the pharmaceutical industry, and within regulatory authorities, that a significant improvement of the current in vitro test methodologies for accurate assessment and prediction of such adverse effects is needed. For this purpose, appropriate in vivo-like hepatic in vitro models are necessary, in addition to novel sources of human hepatocytes. In this report, we describe recent and ongoing research toward the use of human embryonic stem cell (hESC)-derived hepatic cells, in conjunction with new and improved test methods, for evaluating drug metabolism and hepatotoxicity. Recent progress on the directed differentiation of human embryonic stem cells to the functional hepatic phenotype is reported, as well as the development and adaptation of bioreactors and toxicity assay technologies for the testing of hepatic cells. The aim of achieving a testing platform for metabolism and hepatotoxicity assessment, based on hESC-derived hepatic cells, has advanced markedly in the last 2-3 years. However, great challenges still remain, before such new test systems could be routinely used by the industry. In particular, we give an overview of results from the Vitrocellomics project (EU Framework 6) and discuss these in relation to the current state-of-the-art and the remaining difficulties, with suggestions on how to proceed before such in vitro systems can be implemented in industrial discovery and development settings and in regulatory acceptance.  相似文献   

20.
To generate multicellular tumor spheroids (MTS) based on human breast adenocarcinoma MCF-7 cells and to study them as a novel in vitro model for anticancer drug screening, a technique for cell microencapsulation in biocompatible alginate-chitosan microcapsules has been used in this study. Using the MTS based on the MCF-7 cells methotrexate (MTX) cytotoxicity has been investigated. A set of MTS with an average size of 150, 200 and 300 μm was prepared as a function of cultivation time. Cell viability was evaluated after MTS incubation in cultivation medium containing various MTX concentrations (1, 2, 10, 50 and 100 nM) for 48 h. MTS were shown to be markedly more resistant to MTX than the monolayer culture. The increase of the spheroid size was in correlation with the enhanced MTS resistance to MTX. Thus, at 100 nM MTX a number of viable cells in MTS with the size of 300 μm was 2.5-fold higher than that in the monolayer culture. It is suggested that the cells microencapsulated into MTS can better mimic cell behavior in small solid tumors compared to the monolayer culture. In the future MTS could be proposed as a novel in vitro model for anticancer drug screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号