首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasmids or viral vectors that express short hairpin RNAs (shRNAs) have emerged as important tools for the stable inhibition of specific genes by RNA interference. shRNAs are structural and functional homologs of pre-microRNAs, intermediates in the production of endogenously encoded microRNAs (miRNAs). Therefore, overexpressed shRNAs could inhibit miRNA function by competing for a limiting level of one or more factors involved in miRNA biogenesis or function. Here, we demonstrate that overexpressed shRNAs can saturate the activity of endogenous Exportin 5, a factor required for nuclear export of both shRNAs and pre-miRNAs. While shRNA overexpression can therefore inhibit miRNA function, simultaneous overexpression of Exportin 5 reverses this effect. Moreover, Exportin 5 overexpression can significantly enhance RNA interference mediated by shRNAs. These data have implications for the future clinical utilization of shRNAs and also provide a simple method to enhance RNA interference by shRNAs in culture.  相似文献   

2.
The effect of RNA interference (RNAi) is generally more potent in Drosophila Schneider 2 (S2) cells than in mammalian cells. In mammalian cells, PolIII promoter-based DNA vectors can be used to express small interfering RNA (siRNA) or short hairpin RNA (shRNA); however, this has not been demonstrated in cultured Drosophila cells. Here we show that shRNAs transcribed from the Drosophila U6 promoter can efficiently trigger gene silencing in S2 cells. By targeting firefly luciferase mRNA, we assessed the efficacy of the shRNAs and examined the structural requirements for highly effective shRNAs. The silencing effect was dependent on the length of the stem region and the sequence of the loop region. Furthermore, we demonstrate that the expression of the endogenous cyclin E protein can be repressed by the U6 promoter-driven shRNAs. Drosophila U6 promoter-based shRNA expression systems may permit stable gene silencing in S2 cells.  相似文献   

3.

Background  

Effective and stable knockdown of multiple gene targets by RNA interference is often necessary to overcome isoform redundancy, but it remains a technical challenge when working with intractable cell systems.  相似文献   

4.
5.
6.
Small interfering RNAs (siRNAs) represent RNA duplexes of 21 nucleotides in length that inhibit gene expression. We have used the human gene-external 7S K RNA promoter for synthesis of short hairpin RNAs (shRNAs) which efficiently target human lamin mRNA via RNA interference (RNAi). Here we demonstrate that orientation of the target sequence within the shRNA construct is important for interference. Furthermore, effective interference also depends on the length and/or structure of the shRNA. Evidence is presented that the human 7S K promoter is more active in vivo than other gene-external promoters, such as the human U6 small nuclear RNA (snRNA) gene promoter.  相似文献   

7.
Inhibition of herpesvirus-6B RNA replication by short interference RNAs   总被引:1,自引:0,他引:1  
RNA interference (RNAi) is a process of sequence-specific gene silencing, which is initiated by double-stranded RNA (dsRNA). RNAi may also serve as an antiviral system in vertebrates. This study describes the inhibition of herpesvirus-6B (HHV-6B) replication by short interference RNAs (siRNAs) that are targeted to the U38 sequence that encodes DNA polymerase. When virus-infected SupT1 cells were treated by siRNA, these cells blocked the cytopathic effect (CPE) and detected the HHV-6B antibody-negative in indirect immunofluorescence assays (IFA). Our result suggests that RNAi can efficiently block Herpesvirus-6B replication.  相似文献   

8.
A method for high-throughput cloning and analysis of short hairpin RNAs (shRNAs) is described. Using this approach, 464 shRNAs against 116 different genes were screened for knockdown efficacy, enabling rapid identification of effective shRNAs against 74 genes. Statistical analysis of the effects of various criteria on the activity of the shRNAs confirmed that some of the rules thought to govern small interfering RNA (siRNA) activity also apply to shRNAs. These include moderate GC content, absence of internal hairpins, and asymmetric thermal stability. However, the authors did not find strong support for position specific rules. In addition, analysis of the data suggests that not all genes are equally susceptible to RNA interference (RNAi).  相似文献   

9.
While recent studies have demonstrated that retroviral vectors can be used to stably express short hairpin RNA (shRNA) to inhibit gene expression, these studies have utilized replication-defective retroviruses. We describe the creation of a replication-competent, Gateway-compatible retroviral vector capable of expressing shRNA that inhibits the expression of specific genes.  相似文献   

10.
Design of extended short hairpin RNAs for HIV-1 inhibition   总被引:5,自引:1,他引:5  
RNA interference (RNAi) targeted towards viral mRNAs is widely used to block virus replication in mammalian cells. The specific antiviral RNAi response can be induced via transfection of synthetic small interfering RNAs (siRNAs) or via intracellular expression of short hairpin RNAs (shRNAs). For HIV-1, both approaches resulted in profound inhibition of virus replication. However, the therapeutic use of a single siRNA/shRNA appears limited due to the rapid emergence of RNAi-resistant escape viruses. These variants contain deletions or point mutations within the target sequence that abolish the antiviral effect. To avoid escape from RNAi, the virus should be simultaneously targeted with multiple shRNAs. Alternatively, long hairpin RNAs can be used from which multiple effective siRNAs may be produced. In this study, we constructed extended shRNAs (e-shRNAs) that encode two effective siRNAs against conserved HIV-1 sequences. Activity assays and RNA processing analyses indicate that the positioning of the two siRNAs within the hairpin stem is critical for the generation of two functional siRNAs. E-shRNAs that are efficiently processed into two effective siRNAs showed better inhibition of virus production than the poorly processed e-shRNAs, without inducing the interferon response. These results provide building principles for the design of multi-siRNA hairpin constructs.  相似文献   

11.
RNA interference (RNAi) mediated by short hairpin-RNA (shRNA) expressing plasmids can induce specific and long-term knockdown of specific mRNAs in eukaryotic cells. To develop a vector-based RNAi model for Schistosoma mansoni, the schistosome U6 gene promoter was employed to drive expression of shRNA targeting reporter firefly luciferase. An upstream region of a U6 gene predicted to contain the promoter was amplified from genomic DNA of S. mansoni. A shRNA construct driven by the predicted U6 promoter targeting luciferase was assembled and cloned into plasmid pXL-Bac II, the construct termed pXL-BacII_SmU6-shLuc. Luciferase expression in transgenic fibrosarcoma HT-1080 cells was significantly reduced 96 h following transduction with plasmid pXL-BacII_SmU6-shLuc, which encodes luciferase mRNA-specific shRNA. In a similar fashion, schistosomules of S. mansoni were transformed with the SmU6-shLuc or control constructs. Firefly luciferase mRNA was introduced into transformed schistosomules after which luciferase activity was analyzed. Significantly less activity was present in schistosomules transfected with pXL-BacII_SmU6-shLuc compared with controls. The findings revealed that the putative S. mansoni U6 gene promoter of 270 bp in length was active in human cells and schistosomes. Given that the U6 gene promoter drove expression of shRNA from an episome, the findings also indicate the potential of this putative RNA polymerase III dependent promoter as a component regulatory element in vector-based RNAi for functional genomics of schistosomes.  相似文献   

12.
13.
14.
Background aimsCD24 is markedly overexpressed in ovarian cancer and plays a critical role in ovarian cancer survival and metastasis, rendering it an interesting target for anti-tumor therapy. Using short hairpin RNA (shRNA) targeting CD24, we aimed to investigate the anti-tumor efficacy of CD24 knockdown in ovarian cancer cells in vitro and in vivo.MethodsCD24 shRNA vector (CD24–shRNA) and empty plasmid vector (EP) were transfected into ovarian cancer SKOV3 cells and the knockdown efficacy assessed by Western blot analysis. The effects of CD24 knockdown in SKOV3 cells in vitro, including cell viability and apoptosis, were determined using methyl thiazolyl blue tetrazolium bromide (MTT), flow cytometry and propidium iodide (PI) staining assays. The effects in vivo of CD24 knockdown on angiogenesis, cell proliferation and apoptosis were assessed using immunohistochemistry against CD31, proliferating cell nuclear antigen (PCNA) and terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) assays.ResultsTransfection of CD24–shRNA effectively down-regulated CD24 expression in vitro and in vivo. Administration of CD24–shRNA into nude mice bearing ovarian cancer significantly suppressed tumor volume growth.ConclusionsKnockdown of CD24 expression by CD24–shRNA significantly inhibited cell viability and induced apoptosis of SKOV3 cells in vitro. Administration with CD24–shRNA in vivo suppressed tumor volume increase by microvessel density (MVD) decrease, cell proliferation inhibition and apoptosis induction. All the data suggested that knockdown of CD24 by shRNA might be a potential therapeutic approach against human ovarian cancer.  相似文献   

15.
16.
17.
Nieth C  Priebsch A  Stege A  Lage H 《FEBS letters》2003,545(2-3):144-150
For reversal of MDR1 gene-dependent multidrug resistance (MDR), two small interfering RNA (siRNA) constructs were designed to inhibit MDR1 expression by RNA interference. SiRNA duplexes were used to treat human pancreatic carcinoma (EPP85-181RDB) and gastric carcinoma (EPG85-257RDB) cells. In both cellular systems, siRNAs could specifically inhibit MDR1 expression up to 91% at the mRNA and protein levels. Resistance against daunorubicin was decreased to 89% (EPP85-181RDB) or 58% (EPG85-257RDB). The data indicate that this approach may be applicable to cancer patients as a specific means to reverse tumors with a P-glycoprotein-dependent MDR phenotype back to a drug-sensitive one.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号