首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translation of cellular mRNAs via initiation at internal ribosome entry sites (IRESs) has received increased attention during recent years due to its emerging significance for many physiological and pathological stress conditions in eukaryotic cells. Expression of genes bearing IRES elements in their mRNAs is controlled by multiple molecular mechanisms, with IRES-mediated translation favored under conditions when cap-dependent translation is compromised. In this review, we discuss recent advances in the field and future directions that may bring us closer to understanding the complex mechanisms that guide cellular IRES-mediated expression. We present examples in which the competitive action of IRES-transacting factors (ITAFs) plays a pivotal role in IRES-mediated translation and thereby controls cell-fate decisions leading to either pro-survival stress adaptation or cell death.Key words: translation initiation, IRES, canonical initiation factors, ITAFs, stress response, eIF2, angiogenesis, mitosis, nutrient-signaling, hyperosmolar stress  相似文献   

2.
Expression of the proteome is tightly regulated at the level of protein synthesis. Translational control is a critical homeostatic mechanism that allows the cell to rapidly change its phenotype in the face of an intra- and extra-cellular environment in constant flux. It is becoming increasingly clear that when it comes to protein translation during cell stress, all mRNAs are not treated equally. The translation of the majority of mRNAs is compromised during cell stresses that induce programmed cell death such as hypoxia, or DNA damage. However, cellular messages harbouring Internal Ribosome Entry Site elements (IRES) within their 5' untranslated regions are insensitive to stress-induced repression of global translation. Instead, these IRES-containing mRNAs use a poorly understood alternative mechanism of translation that allows continued expression of proteins that are required for the cell to recover from a transient stress or to proceed down the path toward apoptotic death. This review will highlight recent literature that suggests why global translation rates are impaired during stress and apoptosis and how these conditions mediate a switch in the mechanism by which pertinent proteins are synthesized. In addition, recent advances towards our understanding of the physiological role and mechanism of IRES-mediated translation in the context of cell stress-induced apoptosis and human disease will be examined.  相似文献   

3.
The majority of cellular stresses lead to the inhibition of cap-dependent translation. Some mRNAs, however, are translated by a cap-independent mechanism, mediated by ribosome binding to internal ribosome entry site (IRES) elements located in the 5' untranslated region. Interestingly, IRES elements are found in the mRNAs of several survival factors, oncogenes and proteins crucially involved in the control of apoptosis. These mRNAs are translated under a variety of stress conditions, including hypoxia, serum deprivation, irradiation and apoptosis. Thus, IRES-mediated translational control might have evolved to regulate cellular responses in acute but transient stress conditions that would otherwise lead to cell death.  相似文献   

4.
IRES elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, ribosome-scanning model, the mechanism of IRES-mediated translation initiation is not well understood. IRES elements, first discovered in viral RNA genomes, were subsequently found in a subset of cellular RNAs as well. Interestingly, these cellular IRES-containing mRNAs appear to play important roles during conditions of cellular stress, development, and disease (e.g., cancer). It has been shown for viral IRESes that some require specific IRES trans-acting factors (ITAFs), while others require few if any additional proteins and can bind ribosomes directly. Current studies are aimed at elucidating the mechanism of IRES-mediated translation initiation and features that may be common or differ greatly among cellular and viral IRESes. This review will explore IRES elements as important RNA structures that function in both cellular and viral RNA translation and the significance of these structures in providing an alternative mechanism of eukaryotic translation initiation.  相似文献   

5.
A 60 nt long RNA termed IRNA, isolated from the yeast Saccharomyces cerevesiae, was previously shown to selectively block internal ribosome entry site (IRES)-mediated translation without interfering with cap-dependent translation of cellular mRNAs both in vivo and in vitro. IRNA specifically bound cellular proteins believed to be important for IRES-mediated translation. We demonstrate here that a complementary copy of IRNA (cIRNA) is also active in blocking IRES-mediated translation and that it binds many of the same cellular proteins that IRNA does. We have probed the secondary structure of both IRNA and cIRNA using single-strand- and double-strand-specific nucleases as well as using oligonucleotide hybridization followed by RNase H digestion. Both IRNA and cIRNA share secondary structural homology, although distinct differences do exist between the two structures. Mutational analysis of IRNA shows that sequences that form both the main stem and one loop are critical for its translation inhibitory activity. Maintenance of the established secondary structure appears to be required for both IRNA's ability to bind cellular trans -acting proteins believed to be required for IRES-mediated translation and its ability to block IRES-mediated translation.  相似文献   

6.
The poly(A) tail at the 3' end of mRNAs enhances 5' cap-dependent translation initiation. We show that it also enhances IRES-directed translation of two cellular mRNAs in vitro and in vivo. The underlying mechanisms, however, differ fundamentally. In contrast to cap-dependent translation, IRES-driven translation continues to be enhanced by the poly(A) tail following proteolytic cleavage of eIF4G. Moreover, the poly(A) tail stimulates IRES-mediated translation even in the presence of PAIP2 or following effective depletion of the poly(A) binding protein (PABP) from HeLa cell extracts. The PABP-eIF4G bridging complex that is critical for cap-dependent translation is thus dispensable for the enhancement of the IRESs by the poly(A) tail. The polyadenylated mRNA translation from cellular IRESs is also profoundly sensitive to eIF4A activity in vitro. These mechanistic and molecular distinctions implicate the potential for a new layer of translational control mechanisms.  相似文献   

7.
Internal ribosome entry sites (IRES) are utilized by a subset of cellular and viral mRNAs to initiate translation during cellular stress and virus infection when canonical cap-dependent translation is compromised. The intergenic region (IGR) IRES of the Dicistroviridae uses a streamlined mechanism in which it can directly recruit the ribosome in the absence of initiation factors and initiates translation using a non-AUG codon. A subset of IGR IRESs including that from the honey bee viruses can also direct translation of an overlapping +1 frame gene. In this study, we systematically examined cellular conditions that lead to IGR IRES-mediated 0 and +1 frame translation in Drosophila S2 cells. Towards this, a novel bicistronic reporter that exploits the 2A “stop-go” peptide was developed to allow the detection of IRES-mediated translation in vivo. Both 0 and +1 frame translation by the IGR IRES are stimulated under a number of cellular stresses and in S2 cells infected by cricket paralysis virus, demonstrating a switch from cap-dependent to IRES-dependent translation. The regulation of the IGR IRES mechanism ensures that both 0 frame viral structural proteins and +1 frame ORFx protein are optimally expressed during virus infection.  相似文献   

8.
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.  相似文献   

9.
Dyskerin is a nucleolar protein encoded by the DKC1 gene that (i) stabilizes the RNA component of the telomerase complex, and (ii) drives the site-specific pseudouridilation of rRNA. It is known that the partial lack of dyskerin function causes a defect in the translation of a subgroup of mRNAs containing internal ribosome entry site (IRES) elements such as those encoding for the tumor suppressors p27 and p53. In this study, we aimed to analyze what is the effect of the lack of dyskerin on the IRES-mediated translation of mRNAs encoding for vascular endothelial growth factor (VEGF). We transiently reduced dyskerin expression and measured the levels of the IRES-mediated translation of the mRNA encoding for VEGF in vitro in transformed and primary cells. We demonstrated a significant increase in the VEGF IRES-mediated translation after dyskerin knock-down. This translational modulation induces an increase in VEGF production in the absence of a significant upregulation in VEGF mRNA levels. The analysis of a list of viral and cellular IRESs indicated that dyskerin depletion can differentially affect IRES-mediated translation. These results indicate for the first time that dyskerin inhibition can upregulate the IRES translation initiation of specific mRNAs.  相似文献   

10.
A number of RNA-containing viruses such as hepatitis C (HCV) and poliovirus (PV) that infect human beings and cause serious diseases use a common mechanism for synthesis of viral proteins, termed internal ribosome entry site (IRES)-mediated translation. This mode of translation initiation involves entry of 40S ribosome internally to the 5' untranslated region (UTR) of viral RNA. Cap-dependent translation of cellular mRNAs, on the other hand, requires recognition of mRNA 5' cap by the translation machinery. In this review, we discuss two inhibitors that specifically inhibit viral IRES-mediated translation without interfering with cellular cap-dependent translation. We present evidence, which suggest that one of these inhibitors, a small RNA (called IRNA) originally isolated from the yeast Saccharomyces cerevisiae, inhibits viral IRES-mediated translation by sequestering both noncanonical transacting factors and canonical initiation factors required for IRES-mediated translation. The other inhibitor, a small peptide from the lupus autoantigen La (called LAP), appears to block binding of cellular transacting factors to viral IRES elements. These results suggest that it might be possible to target viral IRES-mediated translation for future development of therapeutic agents effective against a number of RNA viruses including HCV that exclusively use cap-independent translation for synthesis of viral proteins.  相似文献   

11.
The cationic amino acid transporter, Cat-1, facilitates the uptake of the essential amino acids arginine and lysine. Amino acid starvation causes accumulation and increased translation of cat-1 mRNA, resulting in a 58-fold increase in protein levels and increased arginine uptake. A bicistronic mRNA expression system was used to demonstrate the presence of an internal ribosomal entry sequence (IRES) within the 5'-untranslated region of the cat-1 mRNA. This study shows that IRES-mediated translation of the cat-1 mRNA is regulated by amino acid availability. This IRES causes an increase in translation under conditions of amino acid starvation. In contrast, cap-dependent protein synthesis is inhibited during amino acid starvation, which is well correlated with decreased phosphorylation of the cap-binding protein, eIF4E. These findings reveal a new aspect of mammalian gene expression and regulation that provides a cellular stress response; when the nutrient supply is limited, the activation of IRES-mediated translation of mammalian mRNAs results in the synthesis of proteins essential for cell survival.  相似文献   

12.
The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that La''s RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation.  相似文献   

13.
Initiation of translation from most cellular mRNAs occurs via scanning; the 40 S ribosomal subunit binds to the m(7)G-cap and then moves along the mRNA until an initiation codon is encountered. Some cellular mRNAs contain internal ribosome entry sequences (IRESs) within their 5'-untranslated regions, which allow initiation independently of the 5'-cap. This study investigated the ability of cellular stress to regulate the activity of IRESs in cellular mRNAs. Three stresses were studied that cause the phosphorylation of the translation initiation factor, eIF2alpha, by activating specific kinases: (i) amino acid starvation, which activates GCN2; (ii) endoplasmic reticulum (ER) stress, which activates PKR-like ER kinase, PERK kinase; and (iii) double-stranded RNA, which activates double-stranded RNA-dependent protein kinase (PKR) by mimicking viral infection. Amino acid starvation and ER stress caused transient phosphorylation of eIF2alpha during the first hour of treatment, whereas double-stranded RNA caused a sustained phosphorylation of eIF2alpha after 2 h. The effects of these treatments on IRES-mediated initiation were investigated using bicistronic mRNA expression vectors. No effect was seen for the IRESs from the mRNAs for the chaperone BiP and the protein kinase Pim-1. In contrast, translation mediated by the IRESs from the cationic amino acid transporter, cat-1, and of the cricket paralysis virus intergenic region, were stimulated 3- to 10-fold by all three treatments. eIF2alpha phosphorylation was required for the response because inactivation of phosphorylation prevented the stimulation. It is concluded that cellular stress can stimulate translation from some cellular IRESs via a mechanism that requires the phosphorylation of eIF2alpha. Moreover, there are distinct regulatory patterns for different cellular mRNAs that contain IRESs within their 5'-untranslated regions.  相似文献   

14.
Eukaryotic initiation factor 2A is a single polypeptide that acts to negatively regulate IRES-mediated translation during normal cellular conditions. We have found that eIF2A (encoded by YGR054w) abundance is reduced at both the mRNA and protein level during 6% ethanol stress (or 37°C heat shock) under conditions that mimic the diauxic shift in the yeast Saccharomyces cerevisiae. Furthermore, eIF2A protein is posttranslationally modified during ethanol stress. Unlike ethanol and heat shock stress, H(2)O(2) and sorbitol treatment induce the loss of eIF2A mRNA, but not protein and without protein modification. To investigate the mechanism of eIF2A function we employed immunoprecipitation-mass spectrometry and identified an interaction between eIF2A and eEF1A. The interaction between eIF2A and eEF1A increases during ethanol stress, which correlates with an increase in IRES-mediated translation from the URE2 IRES element. These data suggest that eIF2A acts as a switch to regulate IRES-mediated translation, and eEF1A may be an important mediator of translational activation during ethanol stress.  相似文献   

15.
The human genome contains about 1.5 million Alu elements, which are transcribed into Alu RNAs by RNA polymerase III. Their expression is upregulated following stress and viral infection, and they associate with the SRP9/14 protein dimer in the cytoplasm forming Alu RNPs. Using cell-free translation, we have previously shown that Alu RNPs inhibit polysome formation. Here, we describe the mechanism of Alu RNP-mediated inhibition of translation initiation and demonstrate its effect on translation of cellular and viral RNAs. Both cap-dependent and IRES-mediated initiation is inhibited. Inhibition involves direct binding of SRP9/14 to 40S ribosomal subunits and requires Alu RNA as an assembly factor but its continuous association with 40S subunits is not required for inhibition. Binding of SRP9/14 to 40S prevents 48S complex formation by interfering with the recruitment of mRNA to 40S subunits. In cells, overexpression of Alu RNA decreases translation of reporter mRNAs and this effect is alleviated with a mutation that reduces its affinity for SRP9/14. Alu RNPs also inhibit the translation of cellular mRNAs resuming translation after stress and of viral mRNAs suggesting a role of Alu RNPs in adapting the translational output in response to stress and viral infection.  相似文献   

16.
Physiological and pathophysiological stress attenuates global translation via phosphorylation of eIF2α. This in turn leads to the reprogramming of gene expression that is required for adaptive stress response. One class of cellular messenger RNAs whose translation was reported to be insensitive to eIF2α phosphorylation-mediated repression of translation is that harboring an Internal Ribosome Entry Site (IRES). IRES-mediated translation of several apoptosis-regulating genes increases in response to hypoxia, serum deprivation or gamma irradiation and promotes tumor cell survival and chemoresistance. However, the molecular mechanism that allows IRES-mediated translation to continue in an eIF2α-independent manner is not known. Here we have used the X-chromosome linked Inhibitor of Apoptosis, XIAP, IRES to address this question. Using toeprinting assay, western blot analysis and polysomal profiling we show that the XIAP IRES supports cap-independent translation when eIF2α is phosphorylated both in vitro and in vivo. During normal growth condition eIF2α-dependent translation on the IRES is preferred. However, IRES-mediated translation switches to eIF5B-dependent mode when eIF2α is phosphorylated as a consequence of cellular stress.  相似文献   

17.
The vast majority of cellular mRNAs initiate their translations through a well-defined mechanism of ribosome recruitment that occurs at the 5′-terminal 7-methylguanosine cap with the help of several canonical protein factors. A subset of cellular and viral mRNAs contain regulatory motifs in their 5′ untranslated regions (UTRs), termed internal ribosome entry sites (IRES), that sidestep this canonical mode of initiation. On cellular mRNAs, this mechanism requires IRES trans-acting protein factors (ITAFs) that facilitate ribosome recruitment downstream of the cap. While several ITAFs and their target mRNAs have been empirically identified, the in silico prediction of targets has proved difficult. Here, we report that a high AU content (>60%) of the IRES-containing 5′ UTRs serves as an excellent predictor of dependence on NF45, a recently identified ITAF. Moreover, we provide evidence that cells deficient in NF45 ITAF activity exhibit reduced IRES-mediated translation of X-linked inhibitor of apoptosis protein (XIAP) and cellular inhibitor of apoptosis protein 1 (cIAP1) mRNAs that, in turn, leads to dysregulated expression of their respective targets, survivin and cyclin E. This specific defect in IRES translation explains in part the cytokinesis impairment and senescence-like phenotype observed in HeLa cells expressing NF45 RNA interference (RNAi). This study uncovers a novel role for NF45 in regulating ploidy and highlights the importance of IRES-mediated translation in cellular homeostasis.  相似文献   

18.
19.
IRES-dependent translational control of Cbfa1/Runx2 expression   总被引:4,自引:0,他引:4  
The P1 and P2 promoters of the Cbfa1/Runx2 gene produce Type I and II mRNAs with distinct complex 5'-untranslated regions, respectively designated UTR1 and UTR2. To evaluate whether the 5'-UTRs impart different translational efficiencies to the two isoforms, we created SV40 promoter-UTR-luciferase reporter (luc) constructs in which the translational potential of the 5'-UTR regions was assessed indirectly by measurement of luciferase activity in transfected cell lines in vitro. In MC3T3-E1 pre-osteoblasts, UTR2 was translated approximately twice as efficiently as the splice variants of UTR1, whereas translation of unspliced UTR1 was repressed. To determine if the UTRs conferred internal ribosome entry site (IRES)-dependent translation, we tested bicistronic SV40 promoter-Rluc-UTR-Fluc constructs in which Fluc is expressed only if the intercistronic UTR permits IRES-mediated translation. Transfection of bicistronic constructs into MC3T3-E1 osteoblasts demonstrated that both UTR2 and the spliced forms of UTR1 possess IRES activity. Similar to other cellular IRESs, activity increased with genotoxic stress induced by mitomycin C. In addition, we observed an osteoblastic maturation-dependent increase in IRES-mediated translation of both UTR2 and the spliced forms of UTR1. These findings suggest that Cbfa1 UTRs have IRES-dependent translational activities that may permit continued Cbfa1 expression under conditions that are not optimal for cap-dependent translation.  相似文献   

20.
A significant number of viral and cellular mRNAs utilize cap-independent translation, employing mechanisms distinct from those of canonical translation initiation. Cap-independent translation requires noncanonical, cellular RNA-binding proteins; however, the roles of such proteins in ribosome recruitment and translation initiation are not fully understood. This work demonstrates that a nucleo-cytoplasmic SR protein, SRp20, functions in internal ribosome entry site (IRES)-mediated translation of a viral RNA. We found that SRp20 interacts with the cellular RNA-binding protein, PCBP2, a protein that binds to IRES sequences within the genomic RNAs of certain picornaviruses and is required for viral translation. We utilized in vitro translation in HeLa cell extracts depleted of SRp20 to demonstrate that SRp20 is required for poliovirus translation initiation. Targeting SRp20 in HeLa cells with short interfering RNAs resulted in inhibition of SRp20 protein expression and a corresponding decrease in poliovirus translation. Our data have identified a previously unknown function of an SR protein (i.e., the stimulation of IRES-mediated translation), further documenting the multifunctional nature of this important class of cellular RNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号