首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Hsp90 phosphorylation,Wee1 and the cell cycle   总被引:1,自引:0,他引:1  
Heat Shock Protein 90 (Hsp90) is an essential molecular chaperone in eukaryotic cells, and it maintains the functional conformation of a subset of proteins that are typically key components of multiple regulatory and signaling networks mediating cancer cell proliferation, survival, and metastasis. It is possible to selectively inhibit Hsp90 using natural products such as geldanamycin (GA) or radicicol (RD), which have served as prototypes for development of synthetic Hsp90 inhibitors. These compounds bind within the ADP/ATP-binding site of the Hsp90 N-terminal domain to inhibit its ATPase activity. As numerous N-terminal domain inhibitors are currently undergoing extensive clinical evaluation, it is important to understand the factors that may modulate in vivo susceptibility to these drugs. We recently reported that Wee1Swe1-mediated, cell cycle-dependent, tyrosine phosphorylation of Hsp90 affects GA binding and impacts cancer cell sensitivity to Hsp90 inhibition. This phosphorylation also affects Hsp90 ATPase activity and its ability to chaperone a selected group of clients, comprised primarily of protein kinases. Wee1 regulates the G2/M transition. Here we present additional data demonstrating that tyrosine phosphorylation of Hsp90 by Wee1Swe1 is important for Wee1Swe1 association with Hsp90 and for Wee1Swe1 stability. Yeast expressing non-phosphorylatable yHsp90-Y24F, like swe1? yeast, undergo premature nuclear division that is insensitive to G2/M checkpoint arrest. These findings demonstrate the importance of Hsp90 phosphorylation for proper cell cycle regulation.  相似文献   

3.
Kabakov  A. E.  Kudryavtsev  V. A.  Makarova  Yu. M. 《Biophysics》2011,56(2):339-345
The 90-kDa heat shock protein (Hsp90) is one of the major chaperones in eukaryotes and catalyzes the maturation and activation of its client proteins. Oncogene products, hormones or growth factor receptors, and key components of signaling pathways are responsible for the malignant growth of tumors or their resistance to chemotherapy and radiotherapy; some of these molecules were identified among the client proteins of Hsp90. Upon the inhibition of Hsp90 chaperone function, such client proteins are inactivated and rapidly degraded, which leads to simultaneous blocking of multiple pathways that are essential for malignant cell proliferation and survival; therefore, pharmacological inhibitors of the Hsp90 chaperone activity could be potentially used in anticancer therapy. Several Hsp90 inhibitors are currently being tested in preclinical or phase I–III clinical trials, either as single agents or in combination with other anticancer drugs or irradiation treatment. In this review, we summarize the data regarding the characterization of Hsp90 inhibitors as efficient radiosensitizers of tumor cells. We also discuss molecular mechanisms and the selectivity of radiosensitization induced by Hsp90 inhibition, as well as a possibility of their application to improve the outcome of radiotherapy.  相似文献   

4.
Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of a number of conditionally activated and/or expressed signalling proteins, as well as multiple mutated, chimeric, and/or over-expressed signalling proteins, that promote cancer cell growth and/or survival. Hsp90 inhibitors are unique in that, although they are directed towards a specific molecular target, they simultaneously inhibit multiple cellular signalling pathways. By inhibiting nodal points in multiple overlapping survival pathways utilized by cancer cells, combination of an Hsp90 inhibitor with standard chemotherapeutic agents may dramatically increase the in vivo efficacy of the standard agent. Hsp90 inhibitors may circumvent the characteristic genetic plasticity that has allowed cancer cells to eventually evade the toxic effects of most molecularly targeted agents. The mechanism-based use of Hsp90 inhibitors, both alone and in combination with other drugs, should be effective toward multiple forms of cancer. Further, because Hsp90 inhibitors also induce Hsf-1-dependent expression of Hsp70, and because certain mutated Hsp90 client proteins are neurotoxic, these drugs display ameliorative properties in several neurodegenerative disease models, suggesting a novel role for Hsp90 inhibitors in treating multiple pathologies involving neurodegeneration.  相似文献   

5.
6.
7.
8.
9.
Heat shock protein 90 (Hsp90) is a molecular chaperone whose association is required for the stability and function of multiple mutated, chimeric and over-expressed signaling proteins that promote the growth and/or survival of cancer cells. Hsp90 client proteins include mutated p53, Bcr-Abl, Raf-1, Akt, ErbB2 and hypoxia-inducible factor 1α (HIF-1α). Hsp90 inhibitors, by interacting specifically with a single molecular target, cause the destabilization and eventual degradation of Hsp90 client proteins, and they have shown promising antitumor activity in preclinical model systems. One Hsp90 inhibitor, 17-allylaminogeldanamycin (17AAG), is currently in phase I clinical trial. Because of the chemoprotective activity of several proteins that are Hsp90 clients, the combination of an Hsp90 inhibitor with a standard chemotherapeutic agent could dramatically increase the in vivo efficacy of the therapeutic agent.  相似文献   

10.
Hsp90作为热休克蛋白家族中的重要一员,是一种对细胞生存所必需的分子伴侣,它发挥着稳定顾客蛋白构象、维持其功能的作用。许多顾客蛋白在肿瘤中处于过度表达或持续激活状态,与肿瘤的发生发展有着密切的关系。因此,Hsp90在近年的研究中倍受关注,已经发展为抗肿瘤治疗的良好靶点,目前已经有多个Hsp90抑制剂进入临床实验。近年随着肿瘤分子生物学的研究,肿瘤分子靶向治疗已取得明显成果,针对多种癌症已获得了多个用于靶向治疗的单克隆抗体或小分子化学物质,如用于治疗某些HER2阳性乳腺癌的曲妥珠单抗、用于治疗NSCLC的吉非替尼等。然而随着这些药物的应用,肿瘤耐药性不可避免的产生。多方面研究表明Hsp90抑制剂会引起与耐药相关的多个分子的降解,提示其在拮抗耐药方面具有重要的意义。本文就Hsp90分子抑制剂在拮抗肿瘤耐药方面的研究进行综述。  相似文献   

11.
Therapeutic and diagnostic implications of Hsp90 activation   总被引:8,自引:0,他引:8  
The molecular chaperone heat-shock protein 90 (Hsp90) is involved in the stabilization and conformational maturation of many signaling proteins that are deregulated in cancers. Hsp90 inhibition results in the proteasomal degradation of these client proteins and leads to potent antitumor activity. The Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) is presently in clinical trials. Recent work has identified the role of Hsp90 in multiple signal transduction pathways and revealed that the molecular mechanism of tumor selectivity by Hsp90 inhibitors is the result of an activated, high-affinity conformation of Hsp90 in tumors. This review discusses these recent advances in the understanding of tumor Hsp90 for the treatment and diagnosis of cancer. In addition, the role of Hsp90 in non-oncological diseases will also be discussed.  相似文献   

12.
Heat shock protein 90 (Hsp90) is a molecular chaperone which regulates maturation and stabilization of its substrate proteins, known as client proteins. Many client proteins of Hsp90 are involved in tumor progression and survival and therefore Hsp90 can be a good target for developing anticancer drugs. With the aim of efficiently identifying a new class of orally available inhibitors of the ATP binding site of this protein, we conducted fragment screening and virtual screening in parallel against Hsp90. This approach quickly identified 2-aminotriazine and 2-aminopyrimidine derivatives as specific ligands to Hsp90 with high ligand efficiency. In silico evaluation of the 3D X-ray Hsp90 complex structures of the identified hits allowed us to promptly design CH5015765, which showed high affinity for Hsp90 and antitumor activity in human cancer xenograft mouse models.  相似文献   

13.
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone, assisting intracellularly in the folding and conformational regulation of a multitude of client proteins that play a crucial role in growth, cell survival and developmental processes(1). Moreover HSP90 interacts with a great number of molecules that are involved in the development and/or survival of cancer cells, allowing mutant proteins to retain or gain function while permitting cancer cells to tolerate the imbalanced signaling that such oncoproteins create (2,3). Prime examples include the HER-2 receptor, c-Raf-1, Akt/PKB, CDK4, and mutant p53 (4,5). Highly specific inhibitors of HSP90 have been identified and are currently under clinical evaluation. These include geldanamycin and its derivatives 17-allylamino-17-demethoxygeldanamycin and 17-dimethylaminoethylamino-17-demethoxygeldanamycin, which inhibit cancer cell proliferation in vitro and tumor growth in vivo (6-9).  相似文献   

14.
15.
Hsp90 is an ATP-dependent molecular chaperone that regulates key signaling proteins and thereby impacts cell growth and development. Chaperone cycle of Hsp90 is regulated by ATP binding and hydrolysis through its intrinsic ATPase activities, which is in turn modulated by interaction with its co-chaperones. Hsp90 ATPase activity varies in different organisms and is known to be increased in tumor cells. In this study we have quantitatively analyzed the impact of increasing Hsp90 ATPase activity on the activities of its clients through a virtual prototyping technology, which comprises a dynamic model of Hsp90 interaction with clients involved in proliferation pathways. Our studies highlight the importance of increased ATPase activity of Hsp90 in cancer cells as the key modulator for increased proliferation and survival. A tenfold increase in ATPase activity of Hsp90 often seen in cancer cells increases the levels of active client proteins such as Akt-1, Raf-1 and Cyclin D1 amongst others to about 12-, 8- and 186-folds respectively. Additionally we studied the effect of a competitive inhibitor of Hsp90 activity on the reduction in the client protein levels. Virtual prototyping experiments corroborate with findings that the drug has almost 10- to 100-fold higher affinity as indicated by a lower IC50 value (30–100 nM) in tumor cells with higher ATPase activity. The results also indicate a 15- to 25-fold higher efficacy of the inhibitor in reducing client levels in tumor cells. This analysis provides mechanistic insights into the links between increased Hsp90 ATPase activity, tumor phenotype and the hypersensitivity of tumor Hsp90 to inhibition by ATP analogs.  相似文献   

16.
Hsp90: a chaperone for protein folding and gene regulation.   总被引:1,自引:0,他引:1  
Molecular chaperones are essential components of a quality control machinery present in the cell. They can either aid in the folding and maintenance of newly translated proteins, or they can lead to the degradation of misfolded and destabilized proteins. Hsp90 is a key member of this machinery. It is a ubiquitous molecular chaperone that is found in eubacteria and all branches of eukarya. It plays a central role in cellular signaling since it is essential for maintaining the activity of several signaling proteins, including steroid hormone receptors and protein kinases. Hsp90 is currently a novel anticancer drug target since it is overexpressed in some cancer cells. The chaperone typically functions as part of large complexes, which include other chaperones and essential cofactors that regulate its function. It is thought that different cofactors target Hsp90 to different sets of substrates. However, the mechanism of Hsp90 function remains poorly understood. As part of an effort to elucidate the Hsp90 chaperone network, we carried out a large-scale proteomics study to identify physical and genetic interactors of the chaperone. We identified 2 highly conserved novel Hsp90 cofactors, termed Tah1 and Pih1, that bind to the chaperone and that also associate physically and functionally with the essential DNA helicases Rvb1 and Rvb2. These helicases are key components of the chromatin remodeling complexes Ino80 and SWR-C. Tah1 and Pih1 seem to represent a novel class of Hsp90 cofactors that allow the chaperone to indirectly affect gene regulation in the cell in addition to its ability to directly promote protein folding. In this review, we provide an overview of Hsp90 structure and function, and we discuss the literature that links the chaperone activity to gene regulation.  相似文献   

17.
18.
19.
20.
Hsp90 is a chaperone required for the conformational maturation of certain signaling proteins including Raf, cdk4, and steroid receptors. Natural products and synthetic small molecules that bind to the ATP-binding pocket in the amino-terminal domain of Hsp90 inhibit its function and cause the degradation of these client proteins. Inhibition of Hsp90 function in cells causes down-regulation of an Akt kinase-dependent pathway required for D-cyclin expression and retinoblastoma protein-dependent G(1) arrest. Intracellular Akt is associated with Hsp90 and Cdc37 in a complex in which Akt kinase is active and regulated by phosphatidylinositol 3-kinase. Functional Hsp90 is required for the stability of Akt in the complex. Occupancy of the ATP-binding pocket by inhibitors is associated with the ubiquitination of Akt and its targeting to the proteasome, where it is degraded. This results in a shortening of the half-life of Akt from 36 to 12 h and an 80% reduction in its expression. Akt and its activating kinase, PDK1, are the only members of the protein kinase A/protein kinase B/protein kinase C-like kinase family that are affected by Hsp90 inhibitors. Thus, transduction of growth factor signaling via the Akt and Raf pathways requires functional Hsp90 and can be coordinately blocked by its inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号