首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Singh T  Katiyar SK 《PloS one》2011,6(10):e25224
Melanoma is the most serious type of skin disease and a leading cause of death from skin disease due to its highly metastatic ability. To develop more effective chemopreventive agents for the prevention of melanoma, we have determined the effect of green tea catechins on the invasive potential of human melanoma cells and the molecular mechanisms underlying these effects using A375 (BRAF-mutated) and Hs294t (Non-BRAF-mutated) melanoma cell lines as an in vitro model. Employing cell invasion assays, we found that the inhibitory effects of green tea catechins on the cell migration were in the order of (-)-epigallocatechin-3-gallate (EGCG)>(-)-epigallocatechin>(-)-epicatechin-3-gallate>(-)-gallocatechin>(-)-epicatechin. Treatment of A375 and Hs294t cells with EGCG resulted in a dose-dependent inhibition of cell migration or invasion of these cells, which was associated with a reduction in the levels of cyclooxygenase (COX)-2, prostaglandin (PG) E(2) and PGE(2) receptors (EP2 and EP4). Treatment of cells with celecoxib, a COX-2 inhibitor, also inhibited melanoma cell migration. EGCG inhibits 12-O-tetradecanoylphorbol-13-acetate-, an inducer of COX-2, and PGE(2)-induced cell migration of cells. EGCG decreased EP2 agonist (butaprost)- and EP4 agonist (Cay10580)-induced cell migration ability. Moreover, EGCG inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in A375 melanoma cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited cell migration. Inhibition of melanoma cell migration by EGCG was associated with transition of mesenchymal stage to epithelial stage, which resulted in an increase in the levels of epithelial biomarkers (E-cadherin, cytokeratin and desmoglein 2) and a reduction in the levels of mesenchymal biomarkers (vimentin, fibronectin and N-cadherin) in A375 melanoma cells. Together, these results indicate that EGCG, a major green tea catechin, has the ability to inhibit melanoma cell invasion/migration, an essential step of metastasis, by targeting the endogenous expression of COX-2, PGE(2) receptors and epithelial-to-mesenchymal transition.  相似文献   

2.
Zhang G  Wang Y  Zhang Y  Wan X  Li J  Liu K  Wang F  Liu K  Liu Q  Yang C  Yu P  Huang Y  Wang S  Jiang P  Qu Z  Luan J  Duan H  Zhang L  Hou A  Jin S  Hsieh TC  Wu E 《Current molecular medicine》2012,12(2):163-176
The purpose of this study was to test the hypothesis that administration of epigallocatechin-3-gallate (EGCG), a polyphenol present in abundance in widely consumed tea, inhibits cell proliferation, invasion, and angiogenesis in breast cancer patients. EGCG in 400 mg capsules was orally administered three times daily to breast cancer patients undergoing treatment with radiotherapy. Parameters related to cell proliferation, invasion, and angiogenesis were analyzed while blood samples were collected at different time points to determine efficacy of the EGCG treatment. Compared to patients who received radiotherapy alone, those given radiotherapy plus EGCG for an extended time period (two to eight weeks) showed significantly lower serum levels of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and reduced activation of metalloproteinase-9 and metalloproteinase-2 (MMP9/MMP2). Addition of sera obtained from patients treated with combination of radiotherapy and EGCG feeding for 2-8 weeks to in vitro cultures of highly-metastatic human MDA-MB-231 breast cancer cells resulted in the following significant changes: (1) suppression of cell proliferation and invasion; (2) arrest of cell cycles at the G0/G1 phase; (3) reduction of activation of MMP9/MMP2, expressions of Bcl-2/Bax, c-Met receptor, NF-κB, and the phosphorylation of Akt. MDA-MB-231 cells exposed to 5-10 μM EGCG also showed significant augmentation of the apoptosis inducing effects of γ-radiation, concomitant with reduced NF-κB protein level and AKT phosphorylation. These results provide hitherto unreported evidence that EGCG potentiated efficacy of radiotherapy in breast cancer patients, and raise the possibility that this tea polyphenol has potential to be a therapeutic adjuvant against human metastatic breast cancer.  相似文献   

3.
Prostate cancer is the second most frequent type of cancer that affects men. Docetaxel (DTX) administration is the front-line therapy for patients with advanced prostate cancer and unfortunately, half of these patients develop resistance to DTX which could be due to its ability to activate the NF-κB pathway. The combinational effect of DTX and nimbolide on proliferation, apoptosis, activation of NF-κB, DNA binding ability of NF-κB, and expression of NF-κB-targeted gene products was investigated. The antitumor and antimetastatic effect of DTX or NL alone or in combination was also examined. The co-administration of NL and DTX resulted in a significant loss of cell viability with enhanced apoptosis in DTX-sensitive/resistant prostate cancer cells. NL abrogated DTX-triggered NF-κB activation and expression of its downstream antiapoptotic factors (survivin, Bcl-2, and XIAP). The combination of NL and DTX significantly reduced the DNA binding ability of NF-κB in both cell types. NL significantly enhanced the antitumor effect of DTX and reduced metastases in orthotopic models of prostate cancer. NL abolishes DTX-induced-NF-κB activation to counteract cell proliferation, tumor growth, and metastasis in the prostate cancer models.  相似文献   

4.
Infrasound, a kind of common environmental noise and a major contributor of vibroacoustic disease, can induce the central nervous system (CNS) damage. However, no relevant anti-infrasound drugs have been reported yet. Our recent studies have shown that infrasound resulted in excessive microglial activation rapidly and sequential inflammation, revealing a potential role of microglia in infrasound-induced CNS damage. Epigallocatechin gallate (EGCG), a major bioactive component in green tea, has the capacity of protecting against various neurodegenerative diseases via an anti-inflammatory mechanism. However, it is still unknown to date whether EGCG acts on infrasound-induced microglial activation and neuronal damage. We showed that, after 1-, 2- or 5-day exposure of rats to 16 Hz, 130 dB infrasound (2 h/day), EGCG significantly inhibited infrasound-induced microglial activation in rat hippocampal region, evidenced by reduced expressions of Iba-1 (a marker for microglia) and proinflammatory cytokines (IL-1β, IL-6, IL-18 and TNF-α). Moreover, infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by EGCG. EGCG also inhibited infrasound-induced activation of primary microglia in vitro and decreased the levels of proinflammatory cytokines in the supernatants of microglial culture, which were toxic to cultured neurons. Furthermore, EGCG attenuated infrasound-induced increases in nuclear NF-κB p65 and phosphorylated IκBα, and ameliorated infrasound-induced decrease in IκB in microglia. Therefore, our study provides the first evidence that EGCG acts against infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation through a potential NF-κB pathway-related mechanism, suggesting that EGCG can be used as a promising drug for the treatment of infrasound-induced CNS damage.  相似文献   

5.
Epigallocatechin-3-gallate (EGCG), the bioactive polyphenol in green tea, has been demonstrated to have various biological activities. Our study aims to investigate the antiproliferation and antimigration effects of EGCG against bladder cancer SW780 cells both in vitro and in vivo. Our results showed that treatment of EGCG resulted in significant inhibition of cell proliferation by induction of apoptosis, without obvious toxicity to normal bladder epithelium SV-HUC-1 cells. EGCG also inhibited SW780 cell migration and invasion at 25–100 μM. Western blot confirmed that EGCG induced apoptosis in SW780 cells by activation of caspases-8, -9 and -3, Bax, Bcl-2 and PARP. Besides, animal study demonstrated that EGCG [100 mg/kg, intraperitoneal (i.p.) injection daily for 3 weeks] decreased the tumor volume significantly in mice bearing SW780 tumors, as well as the tumor weight (decreased by 68.4%). In addition, EGCG down-regulated the expression of nuclear factor-kappa B (NF-κB) and matrix metalloproteinase (MMP)-9 in both protein and mRNA level in tumor and SW780 cells. When NF-κB was inhibited, EGCG showed no obvious effect in cell proliferation and migration. In conclusion, our study demonstrated that EGCG was effective in inhibition SW780 cell proliferation and migration, and presented first evidence that EGCG inhibited SW780 tumor growth by down-regulation of NF-κB and MMP-9.  相似文献   

6.
Melanoma is the most lethal form of human skin cancer. However, only limited chemotherapy is currently available for the metastatic stage of the disease. Since chemotherapy, radiation and sodium arsenite treatment operate mainly through induction of the intrinsic mitochondrial pathway, a strongly decreased mitochondrial function in metastatic melanoma cells, could be responsible for low efficacy of the conventional therapy of melanoma. Another feature of metastatic melanoma cells is their proinflammatory phenotype, linked to endogenous expression of the inflammatory cytokines, such as TNFα IL6 and IL8, their receptors, and constitutive NF-κB- and STAT3-dependent gene expression, including cyclooxygenase-2 (PTGS2/COX2). In the present study, we treated melanoma cells with immunological (monoclonal antibody against TNFα or IL6), pharmacological (small molecular inhibitors of IKKβ-NF-κB and JAK2-STAT3) or genetic (specific RNAi for COX-2) agents that suppressed the inflammatory response in combination with induction of apoptosis via TRAIL. As a result of these combined treatments, exogenous TRAIL via interactions with TRAIL-R2/R1 strongly increased levels of apoptosis in resistant melanoma cells. The present study provides new understanding of the regulation of TRAIL-mediated apoptosis in melanoma and will serve as the foundation for the potential development of a novel approach for a therapy of resistant melanomas.  相似文献   

7.
The oxidoreductase NQO1 plays a prominent role in maintaining the cellular homeostasis. NQO1 is mainly a cytosolic enzyme which catalyzes the metabolism of quinones and is present in almost all tissue types providing protection against different stresses including xenobiotics, oxidants, UV light, and ionizing radiation. This enzyme is overexpressed in many cancerous tissues and its function in carcinogenesis remains unclear. Due to the relative lack of information on the role of NQO1 in melanoma pathogenesis, we attempted to determine the expression and basic function of NQO1 in melanoma cell proliferation. We found that NQO1 is overexpressed in most melanoma cell lines with respect to melanocytes. Furthermore, the expression of this oxidoreductase significantly induces cell cycle progression by upregulating the expression of cyclins A2, B1 and D1, leading to the proliferation of melanoma cells. Our results also indicate that NQO1 is an upstream regulator of NF-κB p50, a factor linked to melanoma progression and poor patient prognosis. Interestingly, we found that NQO1 stabilizes the transactivator BCL3, which in turn upregulates NF-κB p50. More importantly, our results also indicate that NF-κB p50 correlates with the expression of NQO1 and mediates its role in the proliferation of melanoma cells.  相似文献   

8.
Epigallocatechin-3-gallate (EGCG), the major polyphenolic component of green tea, has been demonstrated to possess anti-inflammatory, antioxidant, anti-mutagenic and anti-carcinogenic properties. The anti-melanoma effect of EGCG has been previously suggested, but no clear mechanism of action has been established. In this study, we demonstrated that EGCG inhibits melanoma cell growth at physiological doses (0.1–1 μM). In the search for mechanisms of EGCG-mediated melanoma cell suppression, we found that NF-κB was inhibited, and that reduced NF-κB activity was associated with decreased IL-1β secretion from melanoma cells. Since inflammasomes are involved in IL-1β secretion, we investigated whether IL-1β suppression was mediated by inflammasomes, and found that EGCG treatment led to downregulation of the inflammasome component, NLRP1, and reduced caspase-1 activation. Furthermore, silencing the expression of NLRP1 abolished EGCG-induced inhibition of tumor cell proliferation both in vitro and in vivo, suggesting a key role of inflammasomes in EGCG efficacy. This paper provides a novel mechanism for EGCG-induced melanoma inhibition: inflammasome downregulation → decreased IL-1β secretion → decreased NF-κB activities → decreased cell growth. In addition, it suggests inflammasomes and IL-1β could be potential targets for future melanoma therapeutics.  相似文献   

9.
Cardiac hypertrophy leading to eventual heart failure is the most common cause of mortality throughout the world. The triggering mechanisms for cardiac hypertrophy are not clear but both apoptosis and cell proliferation have been reported in sections of failing hearts. In this study, we utilized both angiotensin II (AngII) treatment of cardiomyocytes and aortic ligation in rats (Rattus norvegicus, Wistar strain) for induction of hypertrophy to understand the cellular factors responsible for activation of apoptotic or anti-apoptotic pathway. Hypertrophy markers (ANF, β-MHC), apoptotic proteins (Bax, Bad, Fas, p53, caspase-3, PARP), and anti-apoptotic or cell proliferation marker proteins (Bcl2, NF-κB, Ki-67) were induced significantly during hypertrophy, both in vitro as well as in vivo. Co-localization of both active caspase-3 and Ki-67 was observed in hypertrophied myocytes. p53 and NF-κBp65 binding to co-activator p300 was also increased in AngII treated myocytes. Inhibition of p53 resulted in downregulation of apoptosis, NF-κB activation, and NF-κB-p300 binding; however, NF-κB inhibition did not inhibit apoptosis or p53-p300 binding. Blocking of either p53 or NF-κB by specific inhibitors resulted in decrease in cell proliferation and hypertrophy markers, suggesting that p53 initially binds to p300 and then this complex recruits NF-κB. Thus, these results indicate the crucial role of p53 in regulating both apoptotic and cell proliferation during hypertrophy.  相似文献   

10.
This study investigates the efficacy of carnosic acid (CA), a polyphenolic diterpene, isolated from the plant rosemary (Rosemarinus officinalis), on androgen-independent human prostate cancer PC-3 cells. CA induced anti-proliferative effects in PC-3 cells in a concentration- and time-dependent manner, which was due to apoptotic induction as evident from flow-cytometry, DNA laddering and TUNEL assay. Apoptosis was associated with the activation of caspase-8, -9, -3 and -7, increase in Bax:Bcl-2 ratio, release of cytochrome-c and decrease in expression of inhibitor of apoptosis (IAP) family of proteins. Apoptosis was attenuated upon pretreatment with specific inhibitors of caspase-8 (Z-IETD-fmk) and caspase-9 (Z-LEHD-fmk) suggesting the involvement of both intrinsic and extrinsic apoptotic cascades. Further, apoptosis resulted from the inhibition of IKK/NF-κB pathway as evident from decreased DNA binding activity, nuclear translocation of p50 and p65 and IκBα phosphorylation. The down-regulation of IKK/NF-κB was associated with inhibition of Akt phosphorylation and its kinase activity with a concomitant increase in the serine/threonine protein phosphatase 2A (PP2A) activity. Pharmacologic inhibition of PP2A by okadaic acid and calyculin A, significantly reversed CA-mediated apoptotic events in PC-3 cells indicating that CA induced apoptosis by activation of PP2A through modulation of Akt/IKK/NF-κB pathway. In addition, CA induced apoptosis in another androgen refractory prostate cancer DU145 cells via intrinsic pathway as evidenced from the activation of caspase 3, cleavage of PARP, increase in Bax:Bcl-2 ratio and cytochrome-c release. Carnosic acid, therefore, may have the potential for use in the prevention and/or treatment of prostate cancer.  相似文献   

11.
We previously reported that interleukin-1 (IL-1), a potent bone resorptive cytokine, stimulates the synthesis of interleukin-6 (IL-6) via activation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that AMP-activated protein kinase (AMPK) negatively regulates the IL-1-induced IL-6 synthesis through the inhibitor of κB (IκB)/nuclear factor-κB (NF-κB) pathway. On the other hand, it is recognized that catechin possesses a beneficial property for bone metabolism. Among them, (-)-epigallocatechin gallate (EGCG) is an abundant and major bioactive component. In the present study, we investigated the effect of EGCG on the IL-1 stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells. EGCG significantly enhanced the IL-1-stimulated IL-6 synthesis in a dose-dependent manner in the range between 50 and 100 μM. EGCG increased the mRNA levels of IL-6 stimulated by IL-1. IL-1-induced phosphorylation of IκB and NF-κB were suppressed by EGCG. On the other hand, EGCG failed to affect the IL-1-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase and AMPK. These results strongly suggest that EGCG enhances IL-1-stimulated IL-6 synthesis through inhibiting the AMPK-IκB/NF-κB pathway at the point between AMPK and IκB/NF-κB in osteoblasts.  相似文献   

12.
Hexamethylene Bisacetamide (HMBA) is a hybrid polar compound originally developed as a differentiation inducing agent. We show in this study that HMBA can inhibit activation of several NF-κB target genes in both lung and breast cancer cell lines. Furthermore, consistent with its ability to inhibit NF-κB function, HMBA can also sensitize cells to apoptosis. We show that HMBA mediates inhibition of the Akt and ERK/MAPK cascade, both of which are critical for cell survival and proliferation and are well known regulators of NF-κB activation. We also show that PTEN negative breast cancer cells which have hyper activation of the PI3K/Akt pathway show increased sensitivity to growth inhibitory effects of combination of HMBA and TNFα. Furthermore, HMBA can decrease the kinase activity of the IKK complex leading to defective phosphorylation of IκBα and Ser536 of p65. This study gives mechanistic insight into the mechanism of action of HMBA, provides the rationale for the potential use of HMBA in combination with various existing kinase inhibitors in combination therapy and also suggests useful biomarkers for monitoring tumor response to HMBA.  相似文献   

13.
14.
15.
Myeloma cells are dependent on IL6 for their survival and proliferation during the early stages of disease, and independence from IL6 is associated with disease progression. The role of the NF-κB pathway in the IL6-independent growth of myeloma cells has not been studied. Because human herpesvirus 8-encoded K13 selectively activates the NF-κB pathway, we have used it as a molecular tool to examine the ability of the NF-κB pathway to confer IL6 independence on murine plasmacytomas. We demonstrated that ectopic expression of K13, but not its NF-κB-defective mutant or a structural homolog, protected plasmacytomas against IL6 withdrawal-induced apoptosis and resulted in emergence of IL6-independent clones that could proliferate long-term in vitro in the absence of IL6 and form abdominal plasmacytomas with visceral involvement when injected intraperitoneally into syngeneic mice. These IL6-independent clones were dependent on NF-κB activity for their survival and proliferation but were resistant to dexamethasone and INCB018424, a selective Janus kinase 1/2 inhibitor. Ectopic expression of human T cell leukemia virus 1-encoded Tax protein, which resembles K13 in inducing constitutive NF-κB activation, similarly protected plasmacytoma cells against IL6 withdrawal-induced apoptosis. Although K13 is known to up-regulate IL6 gene expression, its protective effect was not due to induction of endogenous IL6 production but instead was associated with sustained expression of several antiapoptotic members of the Bcl2 family upon IL6 withdrawal. Collectively, these results demonstrate that NF-κB activation cannot only promote the emergence of IL6 independence during myeloma progression but can also confer resistance to dexamethasone and INCB018424.  相似文献   

16.
Dihydromyricetin (DHM), a Rattan tea extract, has recently been shown to have anti-cancer activity in mammalian cells. In this study, we investigated the effect of DHM on human melanoma cells. Apart from induction of apoptosis, we demonstrated that DHM induced an autophagic response. Moreover, pharmacological inhibition or genetic blockade of autophagy enhanced DHM-induced cell death and apoptosis, indicating the cytoprotective role of autophagy in DHM-treated human melanoma cells. Further study suggested that the nuclear factor kappa B (NF-κB) signalling pathway was involved in DHM-induced autophagy. Moreover, N-acetyl-cysteine (NAC), an ROS scavenger, abrogated the effects of DHM on NF-κB-dependent autophagy. Taken together, this evidence demonstrates that a strategy of blocking ROS-NF-κB-dependent autophagy to enhance the activity of DHM warrants further attention for the treatment of human melanoma.  相似文献   

17.
MicroRNA-21 (miR-21) is overexpressed in many human tumors and has been linked to various cellular processes altered in cancer. miR-21 is also up-regulated by a number of inflammatory agents, including IFN, which is of particular interest considering the close relationship between inflammation and cancer. Because miR-21 appears to be overexpressed in human melanoma, we examined the role of miR-21 in cancer development and metastasis in B16 mouse melanoma cells. We found that miR-21 is a member of an IFN-induced miRNA subset that requires STAT3 activation. To characterize the role of miR-21 in melanoma behavior, we transduced B16 cells with lentivirus encoding a miR-21 antagomir and isolated miR-21 knockdown B16 cells. miR-21 knockdown or IFN treatment alone inhibited B16 cell proliferation and migration in vitro, and in combination they had an enhanced effect. Moreover, miR-21 knockdown sensitized B16 cells to IFN-induced apoptosis. In B16 cells miR-21 targeted tumor suppressor (PTEN and PDCD4) and antiproliferative (BTG2) proteins. To characterize the role of miR-21 in vivo, empty vector- and antagomiR-21-transduced B16 melanoma cells were injected via tail vein into syngeneic C57BL/6 mice. Although empty vector-transduced B16 cells produced large lung metastases, miR-21 knockdown cells only formed small lung lesions. Importantly, miR-21 knockdown tumor-bearing mice exhibited prolonged survival compared with empty vector tumor-bearing mice. Thus, miR-21 regulates the metastatic behavior of B16 melanoma cells by promoting cell proliferation, survival, and migration/invasion as well as by suppressing IFN action, providing important new insights into the role of miR-21 in melanoma.  相似文献   

18.
Vaid M  Singh T  Katiyar SK 《PloS one》2011,6(6):e21539
Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of grape seed proanthocyanidins (GSPs) on melanoma cancer cell migration and the molecular mechanisms underlying these effects using highly metastasis-specific human melanoma cell lines, A375 and Hs294t. Using in vitro cell invasion assays, we observed that treatment of A375 and Hs294t cells with GSPs resulted in a concentration-dependent inhibition of invasion or cell migration of these cells, which was associated with a reduction in the levels of cyclooxygenase (COX)-2 expression and prostaglandin (PG) E(2) production. Treatment of cells with celecoxib, a COX-2 inhibitor, or transient transfection of melanoma cells with COX-2 small interfering RNA, also inhibited melanoma cell migration. Treatment of cells with 12-O-tetradecanoylphorbol-13-acetate, an inducer of COX-2, enhanced the phosphorylation of ERK1/2, a protein of mitogen-activated protein kinase family, and subsequently cell migration whereas both GSPs and celecoxib significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-promoted cell migration as well as phosphorylation of ERK1/2. Treatment of cells with UO126, an inhibitor of MEK, also inhibited the migration of melanoma cells. Further, GSPs inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in melanoma cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited cell migration. Additionally, inhibition of melanoma cell migration by GSPs was associated with reversal of epithelial-mesenchymal transition process, which resulted in an increase in the levels of epithelial biomarkers (E-cadherin and cytokeratins) while loss of mesenchymal biomarkers (vimentin, fibronectin and N-cadherin) in melanoma cells. Together, these results indicate that GSPs have the ability to inhibit melanoma cell invasion/migration by targeting the endogenous expression of COX-2 and reversing the process of epithelial-to-mesenchymal transition.  相似文献   

19.
(-)-Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, was shown to have cancer chemopreventive activity. In this study, we examined the antimetastatic effects of EGCG or the combination of EGCG and dacarbazine on B16-F3m melanoma cells in vitro and in vivo. First, the antimetastatic potentials of five green tea catechins were examined by soft agar colony formation assay, and the results show that EGCG was more effective than the other catechins in inhibiting soft agar colony formation. Second, EGCG dose-dependently inhibited B16-F3m cell migration and invasion by in vitro Transwell assay. Third, EGCG significantly inhibited the spread of B16-F3m cells on fibronectin, laminin, collagen, and Matrigel in a dose-dependent manner. In addition, EGCG significantly inhibited the tyrosine phosphorylation of focal adhesion kinase (FAK) and the activity of matrix metalloproteinase-9 (MMP-9). In animal experiments, EGCG alone reduced lung metastases in mice bearing B16-F3m melanomas. However, a combination of EGCG and dacarbazine was more effective than EGCG alone in reducing the number of pulmonary metastases and primary tumor growths, and increased the survival rate of melanoma-bearing mice. These results demonstrate that combination treatment with EGCG and dacarbazine strongly inhibits melanoma growth and metastasis, and the action mechanisms of EGCG are associated with the inhibition of cell spreading, cell-extracellular matrix and cell-cell interactions, MMP-9 and FAK activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号