首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
ErbB2 over-expression is detected in approximately 25% of invasive breast cancers and is strongly associated with poor patient survival. We have previously demonstrated that p130Cas adaptor is a crucial mediator of ErbB2 transformation. Here, we analysed the molecular mechanisms through which p130Cas controls ErbB2-dependent invasion in three-dimensional cultures of mammary epithelial cells. Concomitant p130Cas over-expression and ErbB2 activation enhance PI3K/Akt and Erk1/2 MAPK signalling pathways and promote invasion of mammary acini. By using pharmacological inhibitors, we demonstrate that both signalling cascades are required for the invasive behaviour of p130Cas over-expressing and ErbB2 activated acini. Erk1/2 MAPK and PI3K/Akt signalling triggers invasion through distinct downstream effectors involving mTOR/p70S6K and Rac1 activation, respectively. Moreover, in silico analyses indicate that p130Cas expression in ErbB2 positive human breast cancers significantly correlates with higher risk to develop distant metastasis, thus underlying the value of the p130Cas/ErbB2 synergism in regulating breast cancer invasion. In conclusion, high levels of p130Cas favour progression of ErbB2-transformed cells towards an invasive phenotype.  相似文献   

2.
During breast cancer progression, transforming growth factor-β (TGF-β) switches from a tumor suppressor to a pro-metastatic molecule. Several recent studies suggest that this conversion in TGF-β function depends upon fundamental changes in the TGF-β signaling system. We show here that these changes in TGF-β signaling are concomitant with aberrant expression of the focal adhesion protein, p130Cas. Indeed, elevating expression of either the full-length (FL) or just the carboxyl terminus (CT) of p130Cas in mammary epithelial cells (MECs) diminished the ability of TGF-β1 to activate Smad2/3, but increased its coupling to p38 MAPK. This shift in TGF-β signaling evoked (i) resistance to TGF-β-induced growth arrest, and (ii) acinar filling upon three-dimensional organotypic cultures of p130Cas-FL or -CT expressing MECs. Furthermore, rendering metastatic MECs deficient in p130Cas enhanced TGF-β-stimulated Smad2/3 activity, which restored TGF-β-induced growth inhibition both in vitro and in mammary tumors produced in mice. Additionally, whereas elevating TβR-II expression in metastatic MECs had no affect on their phosphorylation of Smad2/3, this event markedly enhanced their activation of p38 MAPK, leading to increased MEC invasion and metastasis. Importantly, depleting p130Cas expression in TβR-II-expressing metastatic MECs significantly increased their activation of Smad2/3, which (i) reestablished the physiologic balance between canonical and noncanonical TGF-β signaling, and (ii) reversed cellular invasion and early mammary tumor cell dissemination stimulated by TGF-β. Collectively, our findings identify p130Cas as a molecular rheostat that regulates the delicate balance between canonical and noncanonical TGF-β signaling, a balance that is critical to maintaining the tumor suppressor function of TGF-β during breast cancer progression.  相似文献   

3.
p130Cas adaptor protein regulates basic processes such as cell cycle control, survival and migration. p130Cas over-expression has been related to mammary gland transformation, however the in vivo consequences of p130Cas over-expression during mammary gland morphogenesis are not known. In ex vivo mammary explants from MMTV-p130Cas transgenic mice, we show that p130Cas impairs the functional interplay between Epidermal Growth Factor Receptor (EGFR) and Estrogen Receptor (ER) during mammary gland development. Indeed, we demonstrate that p130Cas over-expression upon the concomitant stimulation with EGF and estrogen (E2) severely impairs mammary morphogenesis giving rise to enlarged multicellular spherical structures with altered architecture and absence of the central lumen. These filled acinar structures are characterized by increased cell survival and proliferation and by a strong activation of Erk1/2 MAPKs and Akt. Interestingly, antagonizing the ER activity is sufficient to re-establish branching morphogenesis and normal Erk1/2 MAPK activity. Overall, these results indicate that high levels of p130Cas expression profoundly affect mammary morphogenesis by altering epithelial architecture, survival and unbalancing Erk1/2 MAPKs activation in response to growth factors and hormones. These results suggest that alteration of morphogenetic pathways due to p130Cas over-expression might prime mammary epithelium to tumorigenesis.  相似文献   

4.
Identification of genes that are upregulated during mammary epithelial cell morphogenesis may reveal novel regulators of tumorigenesis. We have demonstrated that gene expression programs in mammary epithelial cells grown in monolayer cultures differ significantly from those in three-dimensional (3D) cultures. We identify a protein tyrosine phosphate, PTPRO, that was upregulated in mature MCF-10A mammary epithelial 3D structures but had low to undetectable levels in monolayer cultures. Downregulation of PTPRO by RNA interference inhibited proliferation arrest during morphogenesis. Low levels of PTPRO expression correlated with reduced survival for breast cancer patients, suggesting a tumor suppressor function. Furthermore, we showed that the receptor tyrosine kinase ErbB2/HER2 is a direct substrate of PTPRO and that loss of PTPRO increased ErbB2-induced cell proliferation and transformation, together with tyrosine phosphorylation of ErbB2. Moreover, in patients with ErbB2-positive breast tumors, low PTPRO expression correlated with poor clinical prognosis compared to ErbB2-positive patients with high levels of PTPRO. Thus, PTPRO is a novel regulator of ErbB2 signaling, a potential tumor suppressor, and a novel prognostic marker for patients with ErbB2-positive breast cancers. We have identified the protein tyrosine phosphatase PTPRO as a regulator of three-dimensional epithelial morphogenesis of mammary epithelial cells and as a regulator of ErbB2-mediated transformation. In addition, we demonstrated that ErbB2 is a direct substrate of PTPRO and that decreased expression of PTPRO predicts poor prognosis for ErbB2-positive breast cancer patients. Thus, our results identify PTPRO as a novel regulator of mammary epithelial transformation, a potential tumor suppressor, and a predictive biomarker for breast cancer.  相似文献   

5.
In this study, we aimed to explore the association between miR-99a-5p and CDC25A in breast cancer and the regulatory mechanisms of miR-99a-5p on breast cancer. The expressions of messenger RNA and microRNAs in breast cancer tissues and adjacent tissues were analyzed by the Cancer Genome Atlas microarray analysis. Quantitative real-time polymerase chain reaction was conducted to find out the expression levels of miR-99a-5p and CDC25A. The expression levels of proteins (CDC25A, ki67, cyclin D1, p21, BAX, BCL-2, BCL-XL, MMP2, and MMP9) were determined by Western blot analysis. The relationship between miR-99a-5p and CDC25A was predicted and verified by bioinformatics analysis and dual luciferase assay. After transfection, cell proliferation, invasion, and apoptosis of breast cancer tissues were, respectively, observed by cell counting kit-8 assay, transwell assay, and flow cytometry (FCM). Furthermore, the relationship among miR-99a-5p, CDC25A, and cell-cycle progression was determined by FCM assay. The nude mouse transplantation tumor experiment was performed to verify the influence of miR-99a-5p on breast cancer cell in vivo. The expression of miR-99a-5p in breast cancer tissues and cells was significantly downregulated, whereas CDC25A expression was upregulated. MiR-99a-5p targeted CDC25A and suppressed its expression in breast cancer cells. Overexpression of miR-99a-5p and decreased expression of CDC25A could suppress breast cancer cell proliferation and invasion and facilitate apoptosis. Cell-cycle progression was significantly activated by downregulated miR-99a-5p and upregulated CDC25A. Moreover, miR-99a-5p overexpression repressed the expressions of CDC25A, marker ki67, and Cyclin D1 proteins, whereas it upregulated the expression of p21 protein. MicroRNA-99a-5p suppresses breast cancer progression and cell-cycle pathway through downregulating CDC25A.  相似文献   

6.
Amplification and overexpression of ErbB2 (HER2/Neu) is one of the most common alterations associated with breast cancer. Activation of ErbB2 via homodimerization in a non-transformed human mammary epithelial cell line, MCF-10A, in basement membrane cultures leads to formation of proliferative structures that share properties with non-invasive early stage lesions. Recently, we have shown that activation of ErbB2 homodimers combined with expression of transforming growth factor (TGF)-beta induces invasive and migratory activity in MCF-10A cells. In this system, migration requires inputs from numerous cellular pathways. We discuss this data and a model for migration induced by ErbB2 and TGF-beta. Concurrent studies by other groups have also shown that ErbB2 and TGF-beta can cooperate to increase metastatic and invasive behavior in murine mammary tumors. Here we discuss these studies and the potential implications of this research on breast cancer therapeutics.  相似文献   

7.
Amplification and overexpression of ErbB2 (HER2/Neu) is one of the most common alterations associated with breast cancer. Activation of ErbB2 via homodimerization in a non-transformed human mammary epithelial cell line, MCF-10A, in basement membrane cultures leads to formation of proliferative structures that share properties with non-invasive early stage lesions. Recently, we have shown that activation of ErbB2 homodimers combined with expression of transforming growth factor (TGF)-beta induces invasive and migratory activity in MCF-10A cells. In this system, migration requires inputs from numerous cellular pathways. We discuss this data and a model for migration induced by ErbB2 and TGF-beta. Concurrent studies by other groups have also shown that ErbB2 and TGF-beta can cooperate to increase metastatic and invasive behavior in murine mammary tumors. Here we discuss these studies and the potential implications of this research on breast cancer therapeutics.  相似文献   

8.
Gastric cancer is a common malignant tumor. Studies from our laboratory or others have shown that long non-coding RNA (lncRNA) zinc finger antisense (ZFAS)1 often acts as an oncogene. However, the molecular underpinnings of how ZFAS1 regulates gastric cancer remain to be elucidated. Results showed that ZFAS1 expression was upregulated, and microRNA-200b-3p (miR-200b) expression was downregulated in gastric cancer tissues. MiR-200b overexpression suppressed the proliferation, cell cycle process, and Wnt/β-catenin signaling of gastric cancer cells. Subsequently, we identified miR-200b is a target of ZFAS1 and Wnt1 is a target of miR-200b. Furthermore, promotion of cancer malignant progression and activation of Wnt/β-catenin signaling induced by ZFAS1 was counteracted by increasing miR-200b expression. In vivo, ZFAS1 knockdown suppressed the tumorigenesis with the upregulated miR-200b and the inactive Wnt/β-catenin signaling. Summarily, we demonstrated a critical role of miR-200b in gastric cancer, and ZFAS1 can promote malignant progression through regulating miR-200b mediated Wnt/β-catenin signaling.  相似文献   

9.
Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues, whereas the expression of, EGFR correlated positively with metastasis in both EOC patients and cell lines. Overexpression of miR-7 markedly suppressed the capacities of cell invasion and migration and resulted in morphological changes from a mesenchymal phenotype to an epithelial-like phenotype in EOC. In addition, overexpression of miR-7 upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, accompanied with EGFR inhibition and AKT/ERK1/2 inactivation. Similar to miR-7 transfection, silencing of EGFR with this siRNA in EOC cells also upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, and decreased phosphorylation of both Akt and ERK1/2, confirming that EGFR is a target of miR-7 in reversing EMT. The pharmacological inhibition of PI3K-AKT and ERK1/2 both significantly enhanced CK-18 and β-catenin expression and suppressed vimentin expression, indicating that AKT and ERK1/2 pathways are required for miR-7 mediating EMT. Finally, the expression of miR-7 and EGFR in primary EOC with matched metastasis tissues was explored. It was showed that miR-7 is inversely correlated with EGFR. Taken together, our results suggested that miR-7 inhibited tumor metastasis and reversed EMT through AKT and ERK1/2 pathway inactivation by reducing EGFR expression in EOC cell lines. Thus, miR-7 might be a potential prognostic marker and therapeutic target for ovarian cancer metastasis intervention.  相似文献   

10.
《Translational oncology》2022,15(12):101228
The miR-200 family consists of five members expressed as two clusters: miR-200c/141 cluster and miR-200b/200a/429 cluster. In the mammary gland, miR-200s maintain epithelial identity by decreasing the expression of mesenchymal markers leading to high expression of epithelial markers. While the loss of miR-200s is associated with breast cancer growth and metastasis the impact of miR-200 expression on mammary tumor initiation has not been investigated. Using mammary specific expression of the miR-200b/200a/429 cluster in transgenic mice, we found that elevated expression miR-200s could almost completely prevent mammary tumor development. Only 1 of 16 MTB-IGFIRba429 transgenic mice (expressing both the IGF-IR and miR-200b/200a/429 transgenes) developed a mammary tumor while 100% of MTB-IGFIR transgenic mice (expressing only the IGF-IR transgene) developed mammary tumors. RNA sequencing, qRT-PCR, and immunohistochemistry of mammary tissue from 55-day old mice found Spp1, Saa1, and Saa2 to be elevated in mammary tumors and inhibited by miR-200b/200a/429 overexpression. This study suggests that miR-200s could be used as a preventative strategy to protect women from developing breast cancer. One concern with this approach is the potential negative impact miR-200 overexpression may have on mammary function. However, transgenic overexpression of miR-200s, on their own, did not significantly impact mammary ductal development indicating the miR-200 overexpression should not significantly impact mammary function. Thus, this study provides the initial foundation for using miR-200s for breast cancer prevention and additional studies should be performed to identify strategies for increasing mammary miR-200 expression and determine whether miR-200s can prevent mammary tumor initiation by other genetic alterations.  相似文献   

11.
《Translational oncology》2021,14(12):101228
The miR-200 family consists of five members expressed as two clusters: miR-200c/141 cluster and miR-200b/200a/429 cluster. In the mammary gland, miR-200s maintain epithelial identity by decreasing the expression of mesenchymal markers leading to high expression of epithelial markers. While the loss of miR-200s is associated with breast cancer growth and metastasis the impact of miR-200 expression on mammary tumor initiation has not been investigated. Using mammary specific expression of the miR-200b/200a/429 cluster in transgenic mice, we found that elevated expression miR-200s could almost completely prevent mammary tumor development. Only 1 of 16 MTB-IGFIRba429 transgenic mice (expressing both the IGF-IR and miR-200b/200a/429 transgenes) developed a mammary tumor while 100% of MTB-IGFIR transgenic mice (expressing only the IGF-IR transgene) developed mammary tumors. RNA sequencing, qRT-PCR, and immunohistochemistry of mammary tissue from 55-day old mice found Spp1, Saa1, and Saa2 to be elevated in mammary tumors and inhibited by miR-200b/200a/429 overexpression. This study suggests that miR-200s could be used as a preventative strategy to protect women from developing breast cancer. One concern with this approach is the potential negative impact miR-200 overexpression may have on mammary function. However, transgenic overexpression of miR-200s, on their own, did not significantly impact mammary ductal development indicating the miR-200 overexpression should not significantly impact mammary function. Thus, this study provides the initial foundation for using miR-200s for breast cancer prevention and additional studies should be performed to identify strategies for increasing mammary miR-200 expression and determine whether miR-200s can prevent mammary tumor initiation by other genetic alterations.  相似文献   

12.
Small-cell lung cancer (SCLC) is an aggressive malignancy characterized by high cellular proliferation and early distant metastasis. Our study aimed to explore the effect of miR-22-3p (miR-22, for short) on SCLC radiosensitivity and its molecular mechanisms. The expression level of miR-22 was evaluated in a human normal lung epithelial cell line and a human SCLC cell line, and cell apoptosis and migration were detected. The expression of the miR-22 direct target WRNIP1 mRNA and protein were explored. Five differentially expressed genes were detected. The miR-22 expression in NCI-H446 was significantly decreased, and miR-22 overexpression significantly promoted cell apoptosis. miR-22 overexpression could significantly inhibit the cell migration of SCLC cells, and miR-22 had a negative regulatory effect on WRNIP1 mRNA and protein levels. KLK8 was downregulated, and the messenger RNA (mRNA) of four other genes (PC, SCUBE1, STC1, and GPM6A) was upregulated mRNA in cells overexpressing miR-22, which was in accordance with the bioinformatics analysis. miR-22 could enhance the radiosensitivity of SCLC by targeting WRNIP1.  相似文献   

13.
14.
Immune escape of renal cell carcinoma (RCC) impacts patient survival. However, the molecular mechanism of long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in RCC immune escape remains unclear. Quantitative real-time PCR and western blotting results revealed that the expression of lncRNA SNHG1 and STAT3 were upregulated in RCC tissues and cells and that the expression of miR-129-3p was downregulated. Enzyme-linked immunosorbent assay results revealed the increased levels of immune-related factors (interferon-γ, tumour necrosis factor α, and interleukin-2) in RCC tissues. SNHG1 knockdown or miR-129-3p overexpression inhibited the proliferation and invasion of A498 and 786-O cells, while the proliferation and cytotoxicity of CD8+ T cells increased, which promoted the secretion of immune-related factors. STAT3 overexpression decreased the protective effect of miR-129-3p overexpression on RCC cell immune escape. In addition, miR-129-3p knockdown and STAT3 overexpression decreased the protective effect of lncRNA SNHG1 knockdown on RCC cell immune escape. In addition, PD-L1 expression was downregulated after lncRNA SNHG1 knockdown but upregulated after miR-129-3p knockdown and STAT3 overexpression. Dual-luciferase assays showed that lncRNA SNHG1 targets miR-129-3p, and miR-129-3p targets STAT3. RNA pull-down and RNA immunoprecipitation assays verified the regulatory relationship between SNHG1 and STAT3. In vivo, shSNHG1 prolonged the overall survival of RCC tumour model mice and inhibited RCC tumour growth and immune escape but increased CD8+ T cell infiltration in mice. Our findings provide an experimental basis for elucidating the molecular mechanisms of immune escape by RCC and reveal a novel target to treat this disease.  相似文献   

15.

Background

MicroRNA (miRNA) are negative regulators of gene expression, capable of exerting pronounced influences upon the translation and stability of mRNA. They are potential regulators of normal mammary gland development and of the maintenance of mammary epithelial progenitor cells. This study was undertaken to determine the role of miR-30b on the establishment of a functional mouse mammary gland. miR-30b is a member of the miR-30 family, composed of 6 miRNA that are highly conserved in vertebrates. It has been suggested to play a role in the differentiation of several cell types.

Methodology/Principal Findings

The expression of miR-30b was found to be regulated during mammary gland development. Transgenic mice overexpressing miR-30b in mammary epithelial cells were used to investigate its role. During lactation, mammary histological analysis of the transgenic mice showed a reduction in the size of alveolar lumen, a defect of the lipid droplets and a growth defect of pups fed by transgenic females. Moreover some mammary epithelial differentiated structures persisted during involution, suggesting a delay in the process. The genes whose expression was affected by the overexpression of miR-30b were characterized by microarray analysis.

Conclusion/Significance

Our data suggests that miR-30b is important for the biology of the mammary gland and demonstrates that the deregulation of only one miRNA could affect lactation and involution.  相似文献   

16.
Studies were undertaken to examine the natural role of ErbB2, ErbB3, and ErbB4 during the development of normal rat mammary epithelial cells (MECs) in vivo and in vitro. Immunohistochemical analysis demonstrated that mammary gland terminal end buds expressed abundant ErbB2 and ErbB4 but limited ErbB3 in pubescent rats, whereas luminal epithelial cells in nulliparous rats expressed ErbB2, ErbB3, and/or ErbB4. During pregnancy, ductal epithelial cells and stromal cells expressed abundant ErbB3 but limited ErbB2. Although ErbB2 and ErbB3 were downregulated throughout lactation, both receptors were re-expressed during involution. In contrast, ErbB4 was downregulated throughout pregnancy, lactation, and involution. Immunoblotting and immunoprecipitation studies confirmed the developmental expression of ErbB2 and ErbB3 in the mammary gland and the co-localization of distinct ErbB receptors in the mammary gland of nulliparous rats. In agreement with our in vivo findings, primary culture studies demonstrated that ErbB2 and ErbB3 were expressed in functionally immature, terminally differentiated and apoptotic MECs, and downregulated in functionally differentiated MECs. ErbB receptor signaling was required for epithelial cell growth, functional differentiation, and morphogenesis of immature MECs, and the survival of terminally differentiated MECs. Finally, ErbB4 expression did not interfere with functional differentiation and apoptosis of normal MECs.  相似文献   

17.
To explore the targeting relationship between miR-490-5p and ECT2 in hepatocellular carcinoma (HCC) and the influences of miR-490-5p and ECT2 on the stemness of HCC cells. The expressions of miR-490-5p and ECT2 in HCC tissues and adjacent tissues were identified by quantitative real-time polymerase chain reaction (qRT-PCR). The relationships between the expression levels of miR-490-5p/ ECT2 and the overall/disease-free survival (OS/DFS) of patients with HCC were evaluated using correlative curves. In addition, the targeting relationship between miR-490-5p and ECT2 was predicted by TargetScan and verified by dual-luciferase reporter assay. Plasmid transfection was used for overexpression of ECT2 in HepG2 cells, and transfection efficiency was verified by qRT-PCR. Cell Counting Kit-8 assay and cell sphere-formation assay were conducted to detect the proliferation and sphere-formation ability of HCC cells, respectively. Cell populations with different cell transfections were sorted using flow cytometry. The expression levels of proteins in the stem cell signaling pathway were determined using Western blot analysis. MiR-490-5p was remarkably downregulated, yet ECT2 was upregulated in HCC tissues compared with adjacent tissues. MiR-490-5p expression was positively correlated with OS and DFS of patients with HCC, which were otherwise negatively correlated with ECT2 expression. ECT2 was validated to be the downstream target of miR-490-5p. Overexpression of miR-490-5p restrained the sphere formation ability, stemness, and proliferation of HCC cells. MiR-490-5p repressed the stemness of HCC cells through inhibiting the expression of ECT2. MiR-490-5p may be an underlying therapeutic target in HCC treatment.  相似文献   

18.
In embryogenesis, p63 is essential to develop mammary glands. In the adult mammary gland, p63 is highly expressed in the basal cell layer that comprises myoepithelial and interspersed stem/progenitor cells, and has limited expression in luminal epithelial cells. In adult skin, p63 has a crucial role in the maintenance of epithelial stem cells. However, it is unclear whether p63 also has an equivalent role as a stem/progenitor cell factor in adult mammary epithelium. We show that p63 is essential in vivo for the survival and maintenance of parity-identified mammary epithelial cells (PI-MECs), a pregnancy-induced heterogeneous population that survives post-lactational involution and contain multipotent progenitors that give rise to alveoli and ducts in subsequent pregnancies. p63+/− glands are normal in virgin, pregnant and lactating states. Importantly, however, during the apoptotic phase of post-lactational involution p63+/− glands show a threefold increase in epithelial cell death, concomitant with increased activation of the oncostatin M/Stat3 and p53 pro-apoptotic pathways, which are responsible for this phase. Thus, p63 is a physiologic antagonist of these pathways specifically in this regressive stage. After the restructuring phase when involution is complete, mammary glands of p63+/− mice again exhibit normal epithelial architecture by conventional histology. However, using RosaLSL-LacZ;WAP-Cre transgenics (LSL-LacZ, lox-stop-lox β-galactosidase), a genetic in vivo labeling system for PI-MECs, we find that p63+/− glands have a 30% reduction in the number of PI-MEC progenitors and their derivatives. Importantly, PI-MECs are also cellular targets of pregnancy-promoted ErbB2 tumorigenesis. Consistent with their PI-MEC pool reduction, one-time pregnant p63+/− ErbB2 mice are partially protected from breast tumorigenesis, exhibiting extended tumor-free and overall survival, and reduced tumor multiplicity compared with their p63+/+ ErbB2 littermates. Conversely, in virgin ErbB2 mice p63 heterozygosity provides no survival advantage. In sum, our data establish that p63 is an important survival factor for pregnancy-identified PI-MEC progenitors in breast tissue in vivo.  相似文献   

19.
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号