首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is possible to divide neuroblastoma cells into clones able to synthesize neurotransmitters (active clones) or not (inactive clones).
The analysis of gangliosides of active and inactive clones shows that their total lipid sialic acids is markedly lower than that of neuron-enriched fractions prepared from brain. The ganglioside pattern of the cultured cells also differs notably from those obtained with neuronal fractions from brain. The absence of tri- and tetrasialogangliosides and the presence of appreciable amounts of the simplest monosialogangliosides are particularly noticeable in the neuroblastoma. Morphological differentiation obtained by serum deprivation, dibutyryl cyclic AMP or bromodeoxyuridine does not restore a true neuronal pattern. Gangliosides could not therefore be used as a marker of neuronal differentiation in this type of cell. No correlations can be found between the ganglioside pattern and the ability of cells to synthesize neurotransmitters.  相似文献   

2.
Integrin trafficking plays an important role in cellular motility and cytokinesis. Integrins undergo constant endo/exocytic shuttling to facilitate the dynamic regulation of cell adhesion. Integrin activity toward the components of the extracellular matrix is regulated by the ability of these receptors to switch between active and inactive conformations. Several cellular signalling pathways have been described in the regulation of integrin traffic under different conditions. However, the interrelationship between integrin activity conformations and their endocytic fate have remained incompletely understood. Here, we have investigated the endocytic trafficking of active and inactive β1 integrins in cancer cells. Both conformers are endocytosed in a clathrin‐ and dynamin‐dependent manner. The net endocytosis rate of the active β1 integrins is higher, whereas endocytosis of the inactive β1 integrin is counteracted by rapid recycling back to the plasma membrane via an ARF 6‐ and early endosome antigen 1‐positive compartment in an Rab 4a‐ and actin‐dependent manner. Owing to these distinct trafficking routes, the two receptor pools display divergent subcellular localization. At steady state, the inactive β1 integrin is mainly on the plasma membrane, whereas the active receptor is predominantly intracellular. These data provide new insights into the endocytic traffic of integrins and imply the possibility of a previously unappreciated crosstalk between pathways regulating integrin activity and traffic.  相似文献   

3.
Bi-directional signaling of integrins plays an important role in platelet and leukocyte function. Talin plays a key role in integrin bi-directional signaling and its binding to integrin is highly regulated. The precise regulation of the recruitment and binding of talin to integrin is still being elucidated. In particular, the recruitment of talin to integrin is controlled by the RAP-1 and RIAM/lamellipodin signaling axis and the affinity between talin and integrin is regulated by the conformation or protease cleavage of talin. However, whether the binding between integrin and talin is also regulated by integrin conformation has not been thoroughly explored before. In this work, we used biochemical binding assays to study the potential role of integrin conformational changes in integrin–talin interactions. Constitutively active integrin αIIbb3 binds markedly stronger to talin than inactive αIIbb3. Inactive αIIbb3 markedly increases its binding to talin once activated, regardless of how αIIbb3 is activated. Further, the increased binding to talin is b3 tail dependent. Our results suggest that integrin conformation is another regulatory mechanism for integrin–talin interaction.  相似文献   

4.
In the present study a model for the compactification of the 30 nm chromatin fibre into higher order structures is suggested. The idea is that basically every condensing agent (HMG/SAR, HP1, cohesin, condensin, DNA–DNA interaction …) can be modeled as an effective attractive potential of specific chain segments. This way the formation of individual 1 Mbp sized rosettes from a linear chain could be observed. We analyse how the size of these rosettes depends on the number of attractive segments and on the segment length. It turns out that 8–20 attractive segments per 1 Mbp domain produces rosettes of 300–800 nm in diameter. Furthermore, our results show that the size of the rosettes is relatively insensitive to the segment length.  相似文献   

5.
6.
Although marigold (Tagetes patula) is known to produce allelopathic compounds toxic to plant-parasitic nematodes, suppression of Meloidogyne incognita can be inconsistent. Two greenhouse experiments were conducted to test whether marigold is more effective in suppressing Meloidogyne spp. when it is active rather than dormant. Soils infested with Meloidogyne spp. were collected and conditioned in the greenhouse either by 1) keeping the soil dry (DRY), 2) irrigating with water (IRR), or 3) drenching with cucumber (Cucumis sativus) leachate (CL) for 5 wk. These soils were then either planted with cucumber, marigold or remained bare for 10 wk. Suppression of nematode by marigold was then assayed using cucumber. DRY conditioning resulted in the highest number of inactive nematodes, whereas CL and IRR had higher numbers of active nematodes than DRY. At the end of the cucumber bioassay, marigold suppressed the numbers of Meloidogyne females in cucumber roots if the soil was conditioned in IRR or CL, but not in DRY. However, in separate laboratory assays, marigold root leachate slightly reduced M. incognita J2 activity but did not reduce egg hatch (P > 0.05). These finding suggest that marigold can only suppress Meloidogyne spp. when marigold is actively growing. This further suggests that marigold will more efficiently suppress Meloidogyne spp. if planted when these nematodes are in active stage.  相似文献   

7.
8.
9.
Cell division control protein 42 homolog (Cdc42) protein, a Ras superfamily GTPase, regulates cellular activities, including cancer progression. Using all-atom molecular dynamics (MD) simulations and essential dynamic analysis, we investigated the structure and dynamics of the catalytic domains of GDP-bound (inactive) and GTP-bound (active) Cdc42 in solution. We discovered substantial differences in the dynamics of the inactive and active forms, particularly in the “insert region” (residues 122–135), which plays a role in Cdc42 activation and binding to effectors. The insert region has larger conformational flexibility in the GDP-bound Cdc42 than in the GTP-bound Cdc42. The G2 loop and switch I at the effector lobe of the catalytic domain exhibit large conformational changes in both the GDP- and the GTP-bound systems, but in the GTP-bound Cdc42, the switch I interactions with GTP are retained. Oncogenic mutations were identified in the Ras superfamily. In Cdc42, the G12V and Q61L mutations decrease the GTPase activity. We simulated these mutations in both GDP- and GTP-bound Cdc42. Although the overall structural organization is quite similar between the wild type and the mutants, there are small differences in the conformational dynamics, especially in the two switch regions. Taken together, the G12V and Q61L mutations may play a role similar to their K-Ras counterparts in nucleotide binding and activation. The conformational differences, which are mainly in the insert region and, to a lesser extent, in the switch regions flanking the nucleotide binding site, can shed light on binding and activation. We propose that the differences are due to a network of hydrogen bonds that gets disrupted when Cdc42 is bound to GDP, a disruption that does not exist in other Rho GTPases. The differences in the dynamics between the two Cdc42 states suggest that the inactive conformation has reduced ability to bind to effectors.  相似文献   

10.
J. B. Virgin  J. Metzger    G. R. Smith 《Genetics》1995,141(1):33-48
The ade6-M26 mutation of the fission yeast Schizosaccharomyces pombe creates a meiotic recombination hotspot that elevates ade6 intragenic recombination ~10-15-fold. A heptanucleotide sequence including the M26 point mutation is required but not sufficient for hotspot activity. We studied the effects of plasmid and chromosomal context on M26 hotspot activity. The M26 hotspot was inactive on a multicopy plasmid containing M26 embedded within 3.0 or 5.9 kb of ade6 DNA. Random S. pombe genomic fragments totaling ~7 Mb did not activate the M26 hotspot on a plasmid. M26 hotspot activity was maintained when 3.0-, 4.4-, and 5.9-kb ade6-M26 DNA fragments, with various amounts of non-S. pombe plasmid DNA, were integrated at the ura4 chromosomal locus, but only in certain configurations relative to the ura4 gene and the cointegrated plasmid DNA. Several integrations created new M26-independent recombination hotspots. In all cases the non-ade6 DNA was located >1 kb from the M26 site, and in some cases >2 kb. Because the chromosomal context effect was transmitted over large distances, and did not appear to be mediated by a single discrete DNA sequence element, we infer that the local chromatin structure has a pronounced effect on M26 hotspot activity.  相似文献   

11.
G-protein-coupled receptors (GPCRs) are membrane proteins that allosterically transduce the signal of ligand binding in the extracellular (EC) domain to couple to proteins in the intracellular (IC) domain. However, the complete pathway of allosteric communication from the EC to the IC domain, including the role of individual amino acids in the pathway is not known. Using the correlation in torsion angle movements calculated from microseconds-long molecular-dynamics simulations, we elucidated the allosteric pathways in three different conformational states of β2-adrenergic receptor (β2AR): 1), the inverse-agonist-bound inactive state; 2), the agonist-bound intermediate state; and (3), the agonist- and G-protein-bound fully active state. The inactive state is less dynamic compared with the intermediate and active states, showing dense clusters of allosteric pathways (allosteric pipelines) connecting the EC with the IC domain. The allosteric pipelines from the EC domain to the IC domain are weakened in the intermediate state, thus decoupling the EC domain from the IC domain and making the receptor more dynamic compared with the other states. Also, the orthosteric ligand-binding site becomes the initiator region for allosteric communication in the intermediate state. This finding agrees with the paradigm that the nature of the agonist governs the specific signaling state of the receptor. These results provide an understanding of the mechanism of allosteric communication in class A GPCRs. In addition, our analysis shows that mutations that affect the ligand efficacy, but not the binding affinity, are located in the allosteric pipelines. This clarifies the role of such mutations, which has hitherto been unexplained.  相似文献   

12.
G-protein-coupled receptors (GPCRs) are membrane proteins that allosterically transduce the signal of ligand binding in the extracellular (EC) domain to couple to proteins in the intracellular (IC) domain. However, the complete pathway of allosteric communication from the EC to the IC domain, including the role of individual amino acids in the pathway is not known. Using the correlation in torsion angle movements calculated from microseconds-long molecular-dynamics simulations, we elucidated the allosteric pathways in three different conformational states of β2-adrenergic receptor (β2AR): 1), the inverse-agonist-bound inactive state; 2), the agonist-bound intermediate state; and (3), the agonist- and G-protein-bound fully active state. The inactive state is less dynamic compared with the intermediate and active states, showing dense clusters of allosteric pathways (allosteric pipelines) connecting the EC with the IC domain. The allosteric pipelines from the EC domain to the IC domain are weakened in the intermediate state, thus decoupling the EC domain from the IC domain and making the receptor more dynamic compared with the other states. Also, the orthosteric ligand-binding site becomes the initiator region for allosteric communication in the intermediate state. This finding agrees with the paradigm that the nature of the agonist governs the specific signaling state of the receptor. These results provide an understanding of the mechanism of allosteric communication in class A GPCRs. In addition, our analysis shows that mutations that affect the ligand efficacy, but not the binding affinity, are located in the allosteric pipelines. This clarifies the role of such mutations, which has hitherto been unexplained.  相似文献   

13.
Different c-Jun N-terminal kinases (JNKs) are activated by a plethora of signals and phosphorylate substrates such as c-Jun, which is required for efficient cell cycle progression. Although JNK1 and JNK2 were shown to differentially regulate fibroblast proliferation, the underlying mechanistic basis remains unclear. We found that Jnk2-/- fibroblasts exit G1 and enter S phase earlier than wild-type counterparts, while Jnk1-/- cells show the inverse phenotype. Moreover, Jnk2-/- erythroblasts also exhibit a proliferative advantage. JNK2 deficiency results in elevated c-Jun phosphorylation and stability, whereas the absence of JNK1 reduces c-Jun phosphorylation and stability. Re-expression of JNK2 in Jnk2-/- cells reverses the JNK2 null phenotype, whereas ectopic expression of JNK1 augments it. JNK2 is preferentially bound to c-Jun in unstimulated cells, thereby contributing to c-Jun degradation. In contrast, JNK1 becomes the major c-Jun interacting kinase after cell stimulation. These data provide mechanistic insights into the distinct roles of different JNK isoforms.  相似文献   

14.

Background

Gene duplication and the subsequent divergence of paralogous pairs play a central role in the evolution of novel gene functions. S. cerevisiae possesses two paralogous genes (ALT1/ALT2) which presumably encode alanine aminotransferases. It has been previously shown that Alt1 encodes an alanine aminotransferase, involved in alanine metabolism; however the physiological role of Alt2 is not known. Here we investigate whether ALT2 encodes an active alanine aminotransferase.

Principal Findings

Our results show that although ALT1 and ALT2 encode 65% identical proteins, only Alt1 displays alanine aminotransferase activity; in contrast ALT2 encodes a catalytically inert protein. ALT1 and ALT2 expression is modulated by Nrg1 and by the intracellular alanine pool. ALT1 is alanine-induced showing a regulatory profile of a gene encoding an enzyme involved in amino acid catabolism, in agreement with the fact that Alt1 is the sole pathway for alanine catabolism present in S. cerevisiae. Conversely, ALT2 expression is alanine-repressed, indicating a role in alanine biosynthesis, although the encoded-protein has no alanine aminotransferase enzymatic activity. In the ancestral-like yeast L. kluyveri, the alanine aminotransferase activity was higher in the presence of alanine than in the presence of ammonium, suggesting that as for ALT1, LkALT1 expression could be alanine-induced. ALT2 retention poses the questions of whether the encoded protein plays a particular function, and if this function was present in the ancestral gene. It could be hypotesized that ALT2 diverged after duplication, through neo-functionalization or that ALT2 function was present in the ancestral gene, with a yet undiscovered function.

Conclusions

ALT1 and ALT2 divergence has resulted in delegation of alanine aminotransferase activity to Alt1. These genes display opposed regulatory profiles: ALT1 is alanine-induced, while ALT2 is alanine repressed. Both genes are negatively regulated by the Nrg1 repressor. Presented results indicate that alanine could act as ALT2 Nrg1-co-repressor.  相似文献   

15.
16.
Zdanov  A. S.  Phan  J.  Evdokimov  A. G.  Tropea  J. E.  Peters  H. K.  Kapust  R. B.  Li  M.  Wlodawer  A.  Waugh  D. S. 《Russian Journal of Bioorganic Chemistry》2003,29(5):415-418
Tobacco Etch Virus Protease (TEV protease) is widely used as a tool for separation of recombinant target proteins from their fusion partners. The crystal structures of two mutants of TEV protease, the active autolysis-resistant mutant TEV-S219D in complex with the proteolysis product, and the inactive mutant TEV-C151A in complex with a substrate, have been determined at 1.8 and 2.2 Å resolution, respectively. The active sites of both mutants, including their oxyanion holes, have identical structures. The C-terminal residues 217–221 of the enzyme are involved in formation of the binding pockets S 3S 6. This indicates that the autolysis of the peptide bond Met218–Ser219 exerts a strong effect on the fine-tuning of the substrate in the enzyme active site, which results in a considerable decrease in the enzymatic activity.  相似文献   

17.
18.
Abstract: Several monoclonal antibodies were raised against chicken acetylcholinesterase (AChE; EC 3.1.1.7). Some of these antibodies react with quail AChE but not with AChEs from nonavian vertebrates or invertebrates and not with butyrylcholinesterase. They may be classified in several mutually compatible groups, i.e., that can bind simultaneously to the monomeric form of AChE. Most antibodies recognize a peptidic domain that does not exist in mammalian AChE and that may be digested by trypsin without loss of activity or dissociation of quaternary structure. The only exception is the antibody C-131, which is conformation dependent and preferentially recognizes active AChE. We have set up two-site immunoradiometric assays, using an immobilized capture antibody, C-6 or C-131, and a radiolabeled antibody, 125I-C-54. The C-6/C-54 assay quantifies the totality of inactive and active AChE subunits: It detects 10?3 Ellman unit (~40 pg of protein) and yields a linear response up to at least 25 10?3 Ellman units. An analysis of gradient fractions, using C-6/C-54 and C-131/C-54 assays as well as activity determination, shows that the A12 and G4 forms are exclusively composed of active subunits, whereas inactive molecules cosediment with the active G2 and G1 forms. Both active and inactive G2 and G1 forms are amphiphilic, as indicated by the influence of detergents on their sedimentation coefficients and Stokes radii. In brain, the proportion of inactive forms decreases from 40% at embryonic day 11 (E11) to 20% at birth [day 1 (D1)]. In muscle, we observed no inactive AChE at E11 and a small proportion of inactive G1 at D1. The proportion of inactive forms was much higher in cultured myotubes, obtained from E11 myoblasts. These results show that the proportion of inactive AChE depends on the tissue and varies during development. Thus, the cells seem to control actively the acquisition of AChE activity, as well as the formation of the various oligomeric forms.  相似文献   

19.
The RecA protein of Deinococcus radiodurans (DrRecA) has a central role in genome reconstitution after exposure to extreme levels of ionizing radiation. When bound to DNA, filaments of DrRecA protein exhibit active and inactive states that are readily interconverted in response to several sets of stimuli and conditions. At 30 °C, the optimal growth temperature, and at physiological pH 7.5, DrRecA protein binds to double-stranded DNA (dsDNA) and forms extended helical filaments in the presence of ATP. However, the ATP is not hydrolyzed. ATP hydrolysis of the DrRecA-dsDNA filament is activated by addition of single-stranded DNA, with or without the single-stranded DNA-binding protein. The ATPase function of DrRecA nucleoprotein filaments thus exists in an inactive default state under some conditions. ATPase activity is thus not a reliable indicator of DNA binding for all bacterial RecA proteins. Activation is effected by situations in which the DNA substrates needed to initiate recombinational DNA repair are present. The inactive state can also be activated by decreasing the pH (protonation of multiple ionizable groups is required) or by addition of volume exclusion agents. Single-stranded DNA-binding protein plays a much more central role in DNA pairing and strand exchange catalyzed by DrRecA than is the case for the cognate proteins in Escherichia coli. The data suggest a mechanism to enhance the efficiency of recombinational DNA repair in the context of severe genomic degradation in D. radiodurans.  相似文献   

20.
Monoclonal antibodies against a cell wall-associated 45-kDa proteinase from Lactobacillus helveticus CP790 were prepared and used for an immunoblotting analysis of the cell wall extract of CP790. They were found to react with an unidentified 46-kDa protein as well as the 45-kDa proteinase. The 46-kDa protein was copurified with the 45-kDa proteinase by affinity column chromatography using antibody-fixed Sepharose and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then extracted from the gels. An elution profile of the cyanogen bromide digest of the purified 46-kDa protein obtained by reversed-phase high-performance liquid chromatography was identical to that of the 45-kDa proteinase except for one peak. An analysis of the N-terminal 21-amino-acid sequence revealed that the 46-kDa protein possesses an extra 7 amino acids at the N terminus of the 45-kDa proteinase. The 46-kDa protein was produced at constant levels during fermentation in a skim milk medium, while the 45-kDa protein was mainly observed in the middle of the exponential phase of growth and was produced in proportion to the proteinase activity. Moreover, only the 46-kDa protein was detected in the crude extract of L. helveticus CP791, a variant strain of CP790 defective in proteinase activity. These data strongly suggest that the 46-kDa protein is a precursor, inactive form of the 45-kDa proteinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号