首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Age to survive: DNA damage and aging   总被引:3,自引:0,他引:3  
Aging represents the progressive functional decline and increased mortality risk common to nearly all metazoans. Recent findings experimentally link DNA damage and organismal aging: longevity-regulating genetic pathways respond to the accumulation of DNA damage and other stress conditions and conversely influence the rate of damage accumulation and its impact for cancer and aging. This novel insight has emerged from studies on human progeroid diseases and mouse models that have deficient DNA repair pathways. Here we discuss a unified concept of an evolutionarily conserved 'survival' response that shifts the organism's resources from growth to maintenance as an adaptation to stresses, such as starvation and DNA damage. This shift protects the organism from cancer and promotes healthy aging.  相似文献   

2.
Aging is characterized by numerous molecular changes, such as accumulation of molecular damage and altered gene expression, many of which are linked to DNA methylation. Here, we characterize the blood DNA methylome across 16 age groups of mice and report numerous global, region‐ and site‐specific features, as well as the associated dynamics of methylation changes. Transition of the methylome throughout lifespan was not uniform, with many sites showing accelerated changes in late life. The associated genes and promoters were enriched for aging‐related pathways, pointing to a fundamental link between DNA methylation and control of the aging process. Calorie restriction both shifted the overall methylation pattern and was accompanied by its gradual age‐related remodeling, the latter contributing to the lifespan‐extending effect. With age, both highly and poorly methylated sites trended toward intermediate levels, and aging was accompanied by an accelerated increase in entropy, consistent with damage accumulation. However, the entropy effects differed for the sites that increased, decreased and did not change methylation with age. Many sites trailed behind, whereas some followed or even exceeded the entropy trajectory and altered the developmental DNA methylation pattern. The patterns we observed in certain genomic regions were conserved between humans and mice, suggesting common principles of functional DNA methylome remodeling and its critical role in aging. The highly resolved DNA methylome remodeling provides an excellent model for understanding systemic changes that characterize the aging process.  相似文献   

3.
微小RNA(microRNA, miRNA)是一类长度在22 nt左右的内源非编码小RNA,广泛存在于动物、植物、病毒等多种有机体中,是机体正常衰老与疾病的重要调控因子。本文对果蝇不同生长时期miRNA的表达模式、主要衰老相关信号通路以及与衰老相关的miRNA进行了综述。在果蝇的不同发育时期均有特定的miRNA发挥重要作用,其表达模式与功能相关;miRNA参与了主要衰老分子信号通路的调控,如胰岛素/胰岛素样生长因子(IIS)通路和雷帕霉素靶蛋白(TOR)通路。研究表明,miRNA通过调控衰老相关信号通路中的靶基因,进而促进或延缓果蝇衰老,如miR-34, miR-8, miR-14, miR let7和miR-277等。因此,研究参与衰老调控的miRNA,为阐明衰老机制及抗衰老药物的设计奠定了基础。  相似文献   

4.
The oxidative stress hypothesis predicts that the accumulation of oxidative damage to a variety of macromolecules is the molecular trigger driving the process of aging. Although an inverse relationship between oxidative damage and lifespan has been established in several different species, the precise relationship between oxidative damage and aging is not fully understood. Drosophila melanogaster is a favored model organism for aging research. Environmental interventions such as ambient temperature and calorie restriction can alter adult lifespan to provide an excellent system to examine the relationship between oxidative damage, aging and lifespan. We have developed an enzyme-linked immunosorbent assay (ELISA) using commercially available reagents for measuring 4-hydroxy-2-nonenal (HNE) in proteins, a marker for oxidative damage to lipids, and present data in flies to show that HNE adducts accumulate in an age-dependent manner. With immunohistology, we also find the primary site of HNE accumulation is the pericerebral fat body, where induction of dFOXO was recently shown to retard aging. When subjected to environmental interventions that shorten lifespan, such as elevated ambient temperature, the chronological accumulation of HNE adduct is accelerated. Conversely, interventions that extend lifespan, such as lower ambient temperature or low calorie diets, slow the accumulation of HNE adduct. These studies associate damage from lipid peroxidation with aging and lifespan in Drosophila and show that calorie restriction in flies, as in mammals, slows the accumulation of lipid related oxidative damage.  相似文献   

5.
Increasing evidence suggests an important role of oxidant-induced damage in the progress of senescent changes, providing support for the free radical theory of aging proposed by Harman in 1956. However, considering that biological organisms continuously renew their structures, it is not clear why oxidative damage should accumulate with age. No strong evidence has been provided in favor of the concept of aging as an accumulation of synthetic errors (e.g. Orgel's 'error-catastrophe' theory and the somatic mutation theory). Rather, we believe that the process of aging may derive from imperfect clearance of oxidatively damaged, relatively indigestible material, the accumulation of which further hinders cellular catabolic and anabolic functions. From this perspective, it might be predicted that: (i) suppression of oxidative damage would enhance longevity; (ii) accumulation of incompletely digested material (e.g. lipofuscin pigment) would interfere with cellular functions and increase probability of death; (iii) rejuvenation during reproduction is mainly provided by dilution of undigested material associated with intensive growth of the developing organism; and (iv) age-related damage starts to accumulate substantially when development is complete, and mainly affects postmitotic, cells and extracellular matrix, not proliferating cells. There is abundant support for all these predictions.  相似文献   

6.
Abstract

Increasing evidence suggests an important role of oxidant-induced damage in the progress of senescent changes, providing support for the free radical theory of aging proposed by Harman in 1956. However, considering that biological organisms continuously renew their structures, it is not clear why oxidative damage should accumulate with age. No strong evidence has been provided in favor of the concept of aging as an accumulation of synthetic errors (e.g. Orgels `error-catastrophe' theory and the somatic mutation theory). Rather, we believe that the process of aging may derive from imperfect clearance of oxidatively damaged, relatively indigestible material, the accumulation of which further hinders cellular catabolic and anabolic functions. From this perspective, it might be predicted that: (i) suppression of oxidative damage would enhance longevity; (ii) accumulation of incompletely digested material (e.g. lipofuscin pigment) would interfere with cellular functions and increase probability of death; (iii) rejuvenation during reproduction is mainly provided by dilution of undigested material associated with intensive growth of the developing organism; and (iv) age-related damage starts to accumulate substantially when development is complete, and mainly affects postmitotic cells and extracellular matrix, not proliferating cells. There is abundant support for all these predictions.  相似文献   

7.
Accumulation of DNA damage is a major driving force of normal cellular aging and has recently been demonstrated to hasten the development of vascular diseases such as atherosclerosis. VSMCs (vascular smooth muscle cells) are essential for vessel wall integrity and repair, and maintenance of their proliferative capacity is essential for vascular health. The signalling pathways that determine VSMC aging remain poorly defined; however, recent evidence implicates persistent DNA damage and the A-type nuclear lamins as key regulators of this process. In the present review, we discuss the importance of the nuclear lamina in the spatial organization of nuclear signalling events, including the DNA-damage response. In particular, we focus on the evidence suggesting that prelamin A accumulation interferes with nuclear spatial compartmentalization by disrupting chromatin organization and DNA-damage repair pathways to promote VSMC aging and senescence.  相似文献   

8.
9.
Insightful articles by Kirkwood and other outstanding scientists reveal paradoxes of aging. The source of paradoxes is an assumption that aging is caused by random accumulation of molecular damage. Here I demonstrate that a concept of TOR-driven program-like aging almost automatically resolves eleven paradoxes of aging. This article discusses why the accumulation of molecular damage does not limit life span, why calorie restriction and inhibition of protein synthesis extend life span, why non-existing ‘program’ for aging is nevertheless robust, why a key gene for aging cannot be found by knocking it out, why low insulin is associated with good health but low insulin response with bad health, why aging is not a disease but can be treated as a disease, why ‘healthy’ aging is slow aging, and how do we know that calorie restriction actually slows aging in humans.  相似文献   

10.
Aging and age-related diseases are one of the most important health issues that the world will confront during the 21st century. Only by understanding the proximal causes will we be able to find treatments to reduce or delay the onset of degenerative diseases associated with aging. Currently, the prevalent paradigm in the field is the accumulation of damage. However, a new theory that proposes an alternative explanation is gaining momentum. The hyperfunction theory proposes that aging is not a consequence of a wear and tear process, but a result of the continuation of developmental programs during adulthood. Here we use Drosophila melanogaster, where evidence supporting both paradigms has been reported, to identify which parameters that have been previously related with lifespan best predict the rate of aging in wild type flies cultured at different temperatures. We find that mitochondrial function and mitochondrial reactive oxygen species (mtROS) generation correlates with metabolic rate, but not with the rate of aging. Importantly, we find that activation of nutrient sensing pathways (i.e. insulin-PI3K/Target of rapamycin (Tor) pathway) correlates with lifespan, but not with metabolic rate. Our results, dissociate metabolic rate and lifespan in wild type flies and instead link nutrient sensing signaling with longevity as predicted by the hyperfunction theory.  相似文献   

11.
Aging is not and cannot be programmed. Instead, aging is a continuation of developmental growth, driven by genetic pathways such as mTOR. Ironically, this is often misunderstood as a sort of programmed aging. In contrast, aging is a purposeless quasi-program or, figuratively, a shadow of actual programs.

“The brightest flame casts the darkest shadow.” -George Martin  相似文献   

12.
According to a long-standing hypothesis, aging is mainly caused by accumulation of nuclear (n) DNA damage in differentiated cells such as neurons due to insufficient nDNA repair during lifetime. In line with this hypothesis it was until recently widely accepted that neuron loss is a general consequence of normal aging, explaining some degree of decline in brain function during aging. However, with the advent of more accurate procedures for counting neurons, it is currently widely accepted that there is widespread preservation of neuron numbers in the aging brain, and the changes that do occur are relatively specific to certain brain regions and types of neurons. Whether accumulation of nDNA damage and decline in nDNA repair is a general phenomenon in the aging brain or also shows cell-type specificity is, however, not known. It has not been possible to address this issue with the biochemical and molecular-biological methods available to study nDNA damage and nDNA repair. Rather, it was the introduction of autoradiographic methods to study quantitatively the relative amounts of nDNA damage (measured as nDNA single-strand breaks) and nDNA repair (measured as unscheduled DNA synthesis) on tissue sections that made it possible to address this question in a cell-type-specific manner under physiological conditions. The results of these studies revealed a formerly unknown inverse relationship between age-related accumulation of nDNA damage and age-related impairment in nDNA repair on the one hand, and the age-related, selective, loss of neurons on the other hand. This inverse relation may not only reflect a fundamental process of aging in the central nervous system but also provide the molecular basis for a new approach to understand the selective neuronal vulnerability in neurodegenerative diseases, particularly Alzheimer's disease.  相似文献   

13.
Increased molecular damage and heterogeneity as the basis of aging   总被引:2,自引:0,他引:2  
Aging at the molecular level is characterized by the progressive accumulation of molecular damage. The sources of damage act randomly through environmental and metabolically generated free radicals, through spontaneous errors in biochemical reactions, and through nutritional components. However, damage to a macromolecule may depend on its structure, localization and interactions with other macromolecules. Damage to the maintenance and repair pathways comprising homeodynamic machinery leads to age-related failure of homeodynamics, increased molecular heterogeneity, altered cellular functioning, reduced stress tolerance, diseases and ultimate death. Novel approaches for testing and developing effective means of intervention, prevention and modulation of aging involve means to minimize the occurrence and accumulation of molecular damage. Mild stress-induced hormesis by physical, biological and nutritional methods, including hormetins, represents a promising strategy for achieving healthy aging and for preventing age-related diseases.  相似文献   

14.
Since aging is primarily the result of a failure of maintenance and repair mechanisms, various approaches are being developed in order to stimulate these pathways and modulate the process of aging. One such approach, termed hormesis, involves challenging cells and organisms by mild stress that often results in anti-aging and life prolonging effects. In a series of experimental studies, we have reported that repeated mild heat stress (RMHS) has anti-aging hormetic effects on growth and various cellular and biochemical characteristics of human skin fibroblasts undergoing aging in vitro. These beneficial effects of repeated challenge include the maintenance of stress protein profile, reduction in the accumulation of oxidatively and glycoxidatively damaged proteins, stimulation of the proteasomal activities for the degradation of abnormal proteins, improved cellular resistance to other stresses, and enhanced levels of cellular antioxidant ability. In order to elucidate the molecular mechanisms of hormetic effects of RMHS, we are now undertaking studies on signal transduction pathways, energy production and utilisation kinetics, and the proteomic analysis of patterns of proteins synthesised and their posttranslational modifications in various types of human cells undergoing cellular aging in vitro. Human applications of hormesis include early intervention and modulation of the aging process to prevent or delay the onset of age-related conditions, such as sarcopenia, Alzheimer's disease, Parkinson's disease, cataracts and osteoporosis.  相似文献   

15.
16.
17.
According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain. However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional mitochondria and that the level of ROS production is higher in young compared to aged muscle. Accordingly, we could not find any increase in oxidative modification of proteins in muscle from elderly donors. However, the accumulation of lipofuscin was identified as a robust marker of human muscle aging. The data support a model, where ROS-induced molecular damage is continuously removed, preventing the accumulation of dysfunctional mitochondria despite ongoing ROS production.  相似文献   

18.
New C. elegans studies imply that lipases and lipid desaturases can mediate signaling effects on aging. But why might fat homeostasis be critical to aging? Could problems with fat handling compromise health in nematodes as they do in mammals? The study of signaling pathways that control longevity could provide the key to one of the great unsolved mysteries of biology: the mechanism of aging. But as our view of the regulatory pathways that control aging grows ever clearer, the nature of aging itself has, if anything, grown more obscure. In particular, focused investigations of the oxidative damage theory have raised questions about an old assumption: that a fundamental cause of aging is accumulation of molecular damage. Could fat dyshomeostasis instead be critical?  相似文献   

19.
A Werner syndrome protein homolog in C. elegans (WRN-1) was immunolocalized to the nuclei of germ cells, embryonic cells, and many other cells of larval and adult worms. When wrn-1 expression was inhibited by RNA interference (RNAi), a slight reduction in C. elegans life span was observed, with accompanying signs of premature aging, such as earlier accumulation of lipofuscin and tissue deterioration in the head. In addition, various developmental defects, including small, dumpy, ruptured, transparent body, growth arrest and bag of worms, were induced by RNAi. The frequency of these defects was accentuated by gamma-irradiation, implying that they were derived from spontaneous or induced DNA damage. wrn-1(RNAi) worms showed accelerated larval growth irrespective of gamma-irradiation, and pre-meiotic germ cells had an abnormal checkpoint response to DNA replication blockage. These observations suggest that WRN-1 acts as a checkpoint protein for DNA damage and replication blockage. This idea is also supported by an accelerated S phase in wrn-1(RNAi) embryonic cells. wrn-1(RNAi) phenotypes similar to those of Werner syndrome, such as premature aging and short stature, suggest wrn-1-deficient C. elegans as a useful model organism for Werner syndrome.  相似文献   

20.
He  Conglian  Sun  Shubin  Tang  Yun  He  Chenggang  Li  Pengfei  Xu  Tianyang  Zhao  Gaokun  Zou  Congming  Lin  Zhonglong  Chen  Yi 《Journal of Plant Growth Regulation》2022,41(3):1013-1031

Leaf aging is a significant process during herbaceous plant senescence, which is influenced by various internal and external factors. During leaf aging, chlorophyll catabolism is one of the most important metabolism pathways and results in leaf yellowing. Understanding the underlying mechanism is important for the regulation of senescence in tobacco leaf. However, there are few studies on explaining tobacco leaf senescence from the proteomics level. Here, photosynthesis experiments, cell ultrastructure, and proteomics were used to study tobacco leaves of different growth stages. We applied iTRAQ-based quantitative proteomics and parallel reaction monitoring (PRM) to determine the accumulation of proteins in aging tobacco leaves. Overall, we screened 4747 proteins. The result of KEGG pathways analysis showed that differently expressed proteins (DEPs) were involved in four pathways: metabolic pathways, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and starch and sucrose metabolism. This would be first report based on iTRAQ-PRM technique, in which we identified proteins related to photosynthesis showed a differently expressed during senescence stage in flue-cured tobacco plants.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号