首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The atypical PKC-interacting protein, Par-4, inhibits cell survival and tumorigenesis in vitro, and its genetic inactivation in mice leads to reduced lifespan, enhanced benign tumour development and low-frequency carcinogenesis. Here, we demonstrate that Par-4 is highly expressed in normal lung but reduced in human lung cancer samples. We show, in a mouse model of lung tumours, that the lack of Par-4 dramatically enhances Ras-induced lung carcinoma formation in vivo, acting as a negative regulator of Akt activation. We also demonstrate in cell culture, in vivo, and in biochemical experiments that Akt regulation by Par-4 is mediated by PKCzeta, establishing a new paradigm for Akt regulation and, likely, for Ras-induced lung carcinogenesis, wherein Par-4 is a novel tumour suppressor.  相似文献   

2.
Activation of the PI3K-Akt pathway by loss of tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) function, increased growth factor signaling, or oncogene expression renders cancer cells resistant to apoptotic signals and promotes tumor growth. Although Akt acts as a global survival signal, the molecular circuits of this pathway have not been completely established. We report that Akt physically binds to the pro-apoptotic protein Par-4 via the Par-4 leucine zipper domain and phosphorylates Par-4 to inhibit apoptosis. Suppression of Akt activation by the PI3K-inhibitor PTEN or LY294002, Akt expression by RNA-interference, or Akt function by dominant-negative Akt caused apoptosis in cancer cells. Apoptosis induced by inhibiting Akt was blocked by inhibition of Par-4 expression, but not by inhibition of other apoptosis agonists that are Akt substrates, suggesting that inhibition of the PI3K-Akt pathway leads to Par-4-dependent apoptosis. Thus, Par-4 is essential for PTEN-inducible apoptosis, and inactivation of Par-4 by Akt promotes cancer cell survival.  相似文献   

3.
The overexpression of the pro-apoptotic protein Prostate Apoptosis Response Protein-4 in colon cancer has been shown to increase response to the chemotherapeutic agent 5-fluorouracil (5-FU). Although colon cancer cells endogenously express Par-4, the presence or overexpression of Par-4 alone does not cause apoptosis. We hypothesize that Par-4 is inactivated in colon cancer. In colon cancer, the levels and the kinase activity of the nonreceptor tyrosine kinase c-Src increase with tumor progression. One of the downstream effectors of c-Src is Akt1. Akt1 has been shown to inhibit the pro-apoptotic activity of Par-4 in prostate cancer cells. We therefore investigated the potential of activating Par-4 by inhibiting c-Src. Colon carcinoma cell lines were treated with the Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2) in combination with the chemotherapeutic agent 5-FU. Treating cells with PP2 and 5-FU resulted in reduced interaction of Par-4 with Akt1 and with the scaffolding protein 14-3-3σ, and mobilization of Par-4 to the nucleus. Par-4 was shown to interact not only with Akt1 and 14-3-3σ, but also with c-Src. Overexpression of c-Src induced the phosphorylation of Par-4 at tyrosine site/s. Thus, in this study, we have shown that Par-4 can be activated by inhibiting Src with a pharmacological inhibitor and adding a chemotherapeutic agent. The activation of the pro-apoptotic protein Par-4 as reported in this study is a novel mechanism by which apoptosis occurs with a Src kinase inhibitor and 5-FU. In addition, we have demonstrated that the pro-apoptotic activity of endogenously expressed Par-4 can be increased in colon cancer cells.  相似文献   

4.
Cigarette smoke, a major risk factor in emphysema, causes cell death by incompletely understood mechanisms. Death-inducing signaling complex (DISC) formation is an initial event in Fas-mediated apoptosis. We demonstrate that cigarette smoke extract (CSE) induces DISC formation in human lung fibroblasts (MRC-5) and promotes DISC trafficking from the Golgi complex to membrane lipid rafts. We demonstrate a novel role of protein kinase C (PKC) in the regulation of DISC formation and trafficking. The PKC isoforms, PKCalpha, zeta, epsilon, and eta, were activated by CSE exposure. Overexpression of wild-type PKCalpha inhibited, while PKCzeta promoted, CSE-induced cell death. Dominant-negative (dn)PKCzeta protected against CSE-induced cell death by suppressing DISC formation and caspase-3 activation, while dnPKCalpha enhanced cell death by promoting these events. DISC formation was augmented by wortmannin, an inhibitor of PI3K. CSE-induced Akt phosphorylation was reduced by dnPKCalpha, but it was increased by dnPKCzeta. Expression of PKCalpha in vivo inhibited DISC formation, caspase-3/8 activation, lung injury, and cell death after prolonged cigarette smoke exposure, whereas expression of PKCzeta promoted caspase-3 activation. In conclusion, CSE-induced DISC formation is differentially regulated by PKCalpha and PKCzeta via the PI3K/Akt pathway. These results suggest that modulation of PKC may have therapeutic potential in the prevention of smoke-related lung injury.  相似文献   

5.
Akt is a serine/threonine kinase that plays a critical role in cell survival signaling and its activation has been linked to tumorigenesis. Up-regulation of Akt as well as its upstream regulator phosphatidylinositol-3 kinase (PI3K) has been found in many tumors and the negative regulator of this pathway PTEN/MMAC is a tumor suppressor. As a target for drug discovery, we have expressed and purified an active Akt1 enzyme from a recombinant baculovirus-infected Sf9 cell culture. Coexpression of Akt1 with the catalytic subunit of PI3K or treatment with okadaic acid during expression was found to generate an active enzyme in the insect cell culture system. We have optimized the kinase activity and developed a simple quantitative kinase assay using biotinylated peptide substrates. Using the purified active enzyme, we have characterized its physical, catalytic and kinetic properties. Since Akt is closely related to protein kinase C (PKC) and protein kinase A, the issue of obtaining selective inhibitors of this enzyme was addressed by comparison of the structures of catalytic domains of Akt and PKC, derived by homology modeling methods. A number of amino acid differences in the ATP binding regions of these kinases were identified, suggesting that selective inhibitors of Akt can be discovered. However, the ATP binding regions are highly conserved in the three isoforms of Akt implying that the discovery of isoform-selective inhibitors would be very challenging.  相似文献   

6.
Akt is a serine/threonine kinase that plays a critical role in cell survival signaling and its activation has been linked to tumorigenesis. Up-regulation of Akt as well as its upstream regulator phosphatidylinositol-3 kinase (PI3K) has been found in many tumors and the negative regulator of this pathway PTEN/MMAC is a tumor suppressor. As a target for drug discovery, we have expressed and purified an active Akt1 enzyme from a recombinant baculovirus-infected Sf9 cell culture. Coexpression of Akt1 with the catalytic subunit of PI3K or treatment with okadaic acid during expression was found to generate an active enzyme in the insect cell culture system. We have optimized the kinase activity and developed a simple quantitative kinase assay using biotinylated peptide substrates. Using the purified active enzyme, we have characterized its physical, catalytic and kinetic properties. Since Akt is closely related to protein kinase C (PKC) and protein kinase A, the issue of obtaining selective inhibitors of this enzyme was addressed by comparison of the structures of catalytic domains of Akt and PKC, derived by homology modeling methods. A number of amino acid differences in the ATP binding regions of these kinases were identified, suggesting that selective inhibitors of Akt can be discovered. However, the ATP binding regions are highly conserved in the three isoforms of Akt implying that the discovery of isoform-selective inhibitors would be very challenging.  相似文献   

7.
We have shown previously that PI3K/Akt pathway is active after cell differentiation in HL60 cells. In the present study, we have investigated whether additional molecules, such as protein kinase C (PKC), are involved in the regulation, not only of telomerase, but also of leukemia cell differentiation. We show that PKC activates telomerase and is, itself, activated following VD3- or ATRA-induced differentiation of HL60 cells, as was observed for PI3K/Akt. To clarify the significance of PI3K/Akt and PKC pathway activation in leukemia cell differentiation, we examined the active proteins in either the downstream or upstream regulation of these pathways. In conjunction with the activation of Akt or PKC, mTOR and S6K were phosphorylated and the protein expression levels of Rictor were increased, compared with Raptor, following cell differentiation. Silencing by Rictor siRNA resulted in the attenuation of Akt phosphorylation on Ser473 and PKCα/βII phosphorylation, as well as the inhibition of Rictor itself, suggesting that Rictor is an upstream regulator of both Akt and PKC. In addition, in cells induced to differentiate by ATRA or VD3, Nitroblue-tetrazolium (NBT) reduction and esterase activity, were blocked either by LY294002, a PI3K inhibitor, or by BIM, a PKC inhibitor, without affecting cell surface markers such as CD11b or CD14. Intriguingly, the silencing of Rictor by its siRNA also suppressed the reducing ability of NBT following VD3-induced cell differentiation. Taken together, our results show that Rictor associated with mTOR (mTORC2) regulates the activity of both Akt and PKC that are involved in cell functions such as NBT reduction and esterase activity induced by leukemia cell differentiation.  相似文献   

8.
The Par-1 protein kinases are conserved from yeast to man and belong to a subfamily of kinases that includes the energy sensor and metabolic regulator, AMPK. Par-1 is regulated by LKB1 and atypical PKC and has been shown in multiple organisms and cell types to be critical for regulation of cellular polarity. Recent studies using knockout mice have revealed several surprising physiological functions for Par-1b/MARK2/EMK1. Our recent study shows that Par-1b regulates metabolic rate, adiposity and insulin sensitivity. This is the first study to implicate these kinases in metabolic functions akin to those previously defined for AMPK. Conversely, another series of recent publications now implicate AMPK in regulation of polarity. Here we discuss the metabolic phenotype seen in Par-1b deficient mice and the synthesis of several findings that link Par-1 and AMPK to a degree that has not been previously appreciated.  相似文献   

9.
Protein kinase C (PKC) activation, enhanced by hyperglycemia, is associated with many tissue abnormalities observed in diabetes. Akt is a serine/threonine kinase that mediates various biological responses induced by insulin. We hypothesized that the negative regulation of Akt in the vasculature by PKC could contribute to insulin resistant states and, may therefore play a role in the pathogenesis of cardiovascular disease. In this study, we specifically looked at the ability of PKC to inhibit Akt activation induced by insulin in cultured rat aortic vascular smooth muscle cells (VSMCs). Activation of Akt was determined by immunoblotting with a phospho-Akt antibody that selectively recognizes Ser473 phosphorylated Akt. A PKC activator, phorbol 12-myristate 13-acetate (PMA), inhibited insulin-dependent Akt phosphorylation. However, PMA did not inhibit platelet-derived growth factor (PDGF)-induced activation of Akt. We further showed that the PKC inhibitor, G06983, blocked the PMA-induced inhibition of Akt phosphorylation by insulin. In addition, we demonstrated that PMA inhibited the insulin-induced tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). From these data, we conclude that PKC is a potent negative regulator of the insulin signal in the vasculature, which indicate an important role of PKC in the development of insulin resistance in cardiovascular disease.  相似文献   

10.
Mdm2 inactivates the tumor suppressor p53 and Akt has been shown to be a major activator of Mdm2 in many cell types. We have investigated the regulation of Mdm2 in hepatocytes. We found that growth factor-induced Ser-166 phosphorylation of Mdm2 was inhibited by the MEK inhibitors U0126 and PD98059 in HepG2 cells and in a rat liver cell line, TRL 1215. Also, bile acids and oxidative stress induced phosphorylation of Mdm2 at Ser-166 by an apparently MEK-ERK-dependent mechanism. In contrast, Ser-166 phosphorylation of Mdm2 in lung cells was mediated by Akt. Further studies revealed that phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin induced phosphorylated ERK Tyr-204 and pMdm2 Ser-166 phosphorylations in hepatocytes in culture and in rat hepatocytes in vivo. In HepG2 cells, this effect was inhibited by U0126 and PD98059. LY294002 also reduced the level of pRaf Ser-259. Furthermore, we have shown that myr-Akt-induced overexpression of pAkt suppressed the levels of pMdm2 Ser-166 in hepatocytes. These data indicate a reversed relationship between Akt and Mdm2 in hepatocytes and suggest that Akt is a negative regulator of Raf-MEK-ERK-Mdm2 in this cell type. Ser-166 phosphorylation of Mdm2 has been shown to increase its ubiquitin ligase activity and increase p53 degradation, and our data indicated an attenuated p53 response to DNA damage in hepatocytes exhibiting high levels of pMdm2 Ser-166. Taken together, our data indicate that Mdm2 phosphorylation is regulated via MEK-ERK in hepatocytes. This Mdm2 signaling might be important for the regeneration of hepatocytes after centrilobular cell death.  相似文献   

11.
We reported previously that protein kinase Calpha (PKCalpha), a negative regulator of cell growth in the intestinal epithelium, inhibits cyclin D1 translation by inducing hypophosphorylation/activation of the translational repressor 4E-BP1. The current study explores the molecular mechanisms underlying PKC/PKCalpha-induced activation of 4E-BP1 in IEC-18 nontransformed rat ileal crypt cells. PKC signaling is shown to promote dephosphorylation of Thr(45) and Ser(64) on 4E-BP1, residues directly involved in its association with eIF4E. Consistent with the known role of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway in regulation of 4E-BP1, PKC signaling transiently inhibited PI3K activity and Akt phosphorylation in IEC-18 cells. However, PKC/PKCalpha-induced activation of 4E-BP1 was not prevented by constitutively active mutants of PI3K or Akt, indicating that blockade of PI3K/Akt signaling is not the primary effector of 4E-BP1 activation. This idea is supported by the fact that PKC activation did not alter S6 kinase activity in these cells. Further analysis indicated that PKC-mediated 4E-BP1 hypophosphorylation is dependent on the activity of protein phosphatase 2A (PP2A). PKC signaling induced an approximately 2-fold increase in PP2A activity, and phosphatase inhibition blocked the effects of PKC agonists on 4E-BP1 phosphorylation and cyclin D1 expression. H(2)O(2) and ceramide, two naturally occurring PKCalpha agonists that promote growth arrest in intestinal cells, activate 4E-BP1 in PKC/PKCalpha-dependent manner, supporting the physiological significance of the findings. Together, our studies indicate that activation of PP2A is an important mechanism underlying PKC/PKCalpha-induced inhibition of cap-dependent translation and growth suppression in intestinal epithelial cells.  相似文献   

12.
LKB1 is a tumor suppressor that may also be fundamental to cell metabolism, since LKB1 phosphorylates and activates the energy sensing enzyme AMPK. We generated muscle-specific LKB1 knockout (MLKB1KO) mice, and surprisingly, found that a lack of LKB1 in skeletal muscle enhanced insulin sensitivity, as evidenced by decreased fasting glucose and insulin concentrations, improved glucose tolerance, increased muscle glucose uptake in vivo, and increased glucose utilization during a hyperinsulinemic-euglycemic clamp. MLKB1KO mice had increased insulin-stimulated Akt phosphorylation and a > 80% decrease in muscle expression of TRB3, a recently identified Akt inhibitor. Akt/TRB3 binding was present in skeletal muscle, and overexpression of TRB3 in C2C12 myoblasts significantly reduced Akt phosphorylation. These results demonstrate that skeletal muscle LKB1 is a negative regulator of insulin sensitivity and glucose homeostasis. LKB1-mediated TRB3 expression provides a novel link between LKB1 and Akt, critical kinases involved in both tumor genesis and cell metabolism.  相似文献   

13.
The prostate-apoptosis-response-gene-4 (Par-4) protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor-mediated cell death pathways. We found that overexpressing Par-4 by stable transfection sensitizes Caki cells to induction of apoptosis by TRAIL and drugs that induce endoplasmic reticulum (ER) stress [thapsigargin (TG), tunicamycin (TU) and etoposide]. Ectopic expression of Par-4 is associated with decreased levels of XIAP protein in TG-treated cells, caused in part by XIAP protein instability and caspase activation. Levels of phospho-Akt are decreased in Caki/Par-4 cells to a significantly greater extent than in Caki/Vector cells by treatment with TG, and this is in turn associated with decreased levels of phospho-PDK1, the kinase upstream of Akt. In conclusion, we provide evidence that ectopic expression of Par-4 sensitizes Caki cells to TG and that XIAP protein instability and inactivation of Akt are important in cellular pathways affected by Par-4.  相似文献   

14.
15.
The emerging evidence reveals that protein arginine methyltransferase 5 (PRMT5) is involved in regulation of tumour cell proliferation and cancer development. Nevertheless, the exact role of PRMT5 in human lung cancer cell proliferation and the underlying molecular mechanism remains largely obscure. Here, we showed that PRMT5 was highly expressed in human lung cancer cells and lung cancer tissues. Furthermore, we generated PRMT5 stable knockdown cell lines (A549 and H1299 cells) and explored the functions of PRMT5 in lung cancer cell proliferation. We found that the down‐regulation of PRMT5 by shRNA or the inhibition of PRMT5 by specific inhibitor GSK591 dramatically suppressed cyclin E1 and cyclin D1 expression and cell proliferation. Moreover, we uncovered that PRMT5 promoted lung cancer cell proliferation via regulation of Akt activation. PRMT5 was directly co‐localized and interacted with Akt, but not PTEN and mTOR. Down‐regulation or inhibition of PRMT5 markedly reduced Akt phosphorylation at Thr308 and Ser473, whereas the expression of PTEN and mTOR phosphorylation was unchanged, indicating that PRMT5 was an important upstream regulator of Akt and induced lung cancer cell proliferation. Altogether, our results indicate that PRMT5 promotes human lung cancer cell proliferation through direct interaction with Akt and regulation of Akt activity. Our findings also suggest that targeting PRMT5 may have therapeutic potential for treatment of human lung cancer.  相似文献   

16.
CHT1 is a Na(+)- and Cl(-)-dependent, hemicholinium-3 (HC-3)-sensitive, high affinity choline transporter. Par-4 (prostate apoptosis response-4) is a leucine zipper protein involved in neuronal degeneration and cholinergic signaling in Alzheimer's disease. We now report that Par-4 is a negative regulator of CHT1 choline uptake activity. Transfection of neural IMR-32 cells with human CHT1 conferred Na(+)-dependent, HC-3-sensitive choline uptake that was effectively inhibited by cotransfection of Par-4. Mapping studies indicated that the C-terminal half of Par-4 was physically involved in interacting with CHT1, and the absence of Par-4.CHT1 complex formation precluded the loss of CHT1-mediated choline uptake induced by Par-4, indicating that Par-4.CHT1 complex formation is essential. Kinetic and cell-surface biotinylation assays showed that Par-4 inhibited CHT1-mediated choline uptake by reducing CHT1 expression in the plasma membrane without significantly altering the affinity of CHT1 for choline or HC-3. These results suggest that Par-4 is directly involved in regulating choline uptake by interacting with CHT1 and by reducing its incorporation on the cell surface.  相似文献   

17.
The animal cell polarity regulator Par-3 recruits the Par complex (consisting of Par-6 and atypical PKC, aPKC) to specific sites on the cell membrane. Although numerous physical interactions have been reported between Par-3 and the Par complex, it is unclear how each of these interactions contributes to the overall binding. Using a purified, intact Par complex and a quantitative binding assay, here, we found that the energy required for this interaction is provided by the second and third PDZ protein interaction domains of Par-3. We show that both Par-3 PDZ domains bind to the PDZ-binding motif of aPKC in the Par complex, with additional binding energy contributed from the adjacent catalytic domain of aPKC. In addition to highlighting the role of Par-3 PDZ domain interactions with the aPKC kinase domain and PDZ-binding motif in stabilizing Par-3–Par complex assembly, our results indicate that each Par-3 molecule can potentially recruit two Par complexes to the membrane during cell polarization. These results provide new insights into the energetic determinants and structural stoichiometry of the Par-3–Par complex assembly.  相似文献   

18.
Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell survival pathways in response to external stimuli.  相似文献   

19.
The evolutionarily conserved Hippo (Hpo) signaling pathway plays a pivotal role in organ size control by balancing cell proliferation and cell death. Here, we reported the identification of Par-1 as a regulator of the Hpo signaling pathway using a gain-of-function EP screen in Drosophila melanogaster. Overexpression of Par-1 elevated Yorkie activity, resulting in increased Hpo target gene expression and tissue overgrowth, while loss of Par-1 diminished Hpo target gene expression and reduced organ size. We demonstrated that par-1 functioned downstream of fat and expanded and upstream of hpo and salvador (sav). In addition, we also found that Par-1 physically interacted with Hpo and Sav and regulated the phosphorylation of Hpo at Ser30 to restrict its activity. Par-1 also inhibited the association of Hpo and Sav, resulting in Sav dephosphorylation and destabilization. Furthermore, we provided evidence that Par-1-induced Hpo regulation is conserved in mammalian cells. Taken together, our findings identified Par-1 as a novel component of the Hpo signaling network.  相似文献   

20.
Inhibition of apoptosis is an important characteristic of oncogenic transformation. The Par-4 gene product has recently been shown to be upregulated in cells undergoing apoptotic cell death, and its ectopic expression was shown to be critical in apoptosis. We demonstrate that expression of oncogenic Ras promotes a potent reduction of Par-4 protein and mRNA levels through a MEK-dependent pathway. In addition, the expression of permanently active mutants of MEK, Raf-1 or zetaprotein kinase C but not of phosphatidylinositol 3-kinase (PI 3-kinase) is sufficient to decrease Par-4 levels. These effects are independent of p53, p16 and p19, and were detected not only in fibroblast primary cultures but also in NIH 3T3 and HeLa cells, indicating that they are not secondary to Ras actions on cell cycle regulation. Importantly, restoration of Par-4 levels to normal in Ras-transformed cells makes these cells sensitive to the pro-apoptotic actions of tumor necrosis factor-alpha under conditions in which PI 3-kinase is inhibited and also severely impairs colony formation in soft agar and tumor development in nude mice, as well as increases the sensitivity of these tumors to camptothecin. This indicates that the downregulation of Par-4 by oncogenic Ras is a critical event in tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号