首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Trends in genetics : TIG》2023,39(6):505-519
ATRX (alpha-thalassemia mental retardation X-linked) is one of the most frequently mutated tumor suppressor genes in human cancers, especially in glioma, and recent findings indicate roles for ATRX in key molecular pathways, such as the regulation of chromatin state, gene expression, and DNA damage repair, placing ATRX as a central player in the maintenance of genome stability and function. This has led to new perspectives about the functional role of ATRX and its relationship with cancer. Here, we provide an overview of ATRX interactions and molecular functions and discuss the consequences of its impairment, including alternative lengthening of telomeres and therapeutic vulnerabilities that may be exploited in cancer cells.  相似文献   

2.
The regulation of genome architecture is essential for a variety of fundamental cellular phenomena that underlie the complex orchestration of mammalian development. The ATP-dependent chromatin remodeling protein ATRX is emerging as a key regulatory component of nucleosomal dynamics and higher order chromatin conformation. Here we provide an overview of the role of ATRX at chromatin and during development, and discuss recent studies exposing a repertoire of ATRX functions at heterochromatin, in gene regulation, and during mitosis and meiosis. Exciting new progress on several fronts suggest that ATRX operates in histone variant deposition and in the modulation of higher order chromatin structure. Not surprisingly, dysfunction or absence of ATRX protein has devastating consequences on embryonic development and leads to human disease.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
《Fly》2013,7(1):36-44
Epigenetic regulation of chromatin structure is a fundamental process for eukaryotes. Regulators include DNA methylation, microRNAs and chromatin modifications. Within the chromatin modifiers, one class of enzymes that can functionally bind and modify chromatin, through the removal of methyl marks, is the histone lysine demethylases. Here, we summarize the current findings of the 13 known histone lysine demethylases in Drosophila melanogaster, and discuss the critical role of these histone-modifying enzymes in the maintenance of genomic functions. Additionally, as histone demethylase dysregulation has been identified in cancer, we discuss the advantages for using Drosophila as a model system to study tumorigenesis.  相似文献   

11.
12.
The binding affinity between the histone 3 (H3) tail and the ADD domain of ATRX (ATRXADD) increases with the subsequent addition of methyl groups on lysine 9 on H3. To improve our understanding of how the difference in methylation state affects binding between H3 and the ATRXADD, we adopted a metadynamic approach to explore the recognition mechanism between the two proteins and identify the key intermolecular interactions that mediate this protein-peptide interaction (PPI). The non-methylated H3 peptide is recognized only by the PHD finger of ATRXADD while mono-, di-, and trimethylated H3 is recognized by both the PHD and GATA-like zinc finger of the domain. Furthermore, water molecules play an important role in orienting the lysine 9 anchor towards the GATA-like zinc finger, which results in stabilizing the lysine 9 binding pocket on ATRXADD. We compared our computational results against experimentally determined NMR and X-ray structures by demonstrating the RMSD, order parameter S2 and hydration number of the complex. The metadynamics data provide new insight into roles of water-bridges and the mechanisms through which K9 hydration stabilizes the H3K9me3:ATRXADD PPI, providing context for the high affinity demonstrated between this protein and peptide.  相似文献   

13.
丝裂原和应激激活的蛋白激酶(MSK)是一类核内丝/苏氨酸蛋白激酶,参与丝裂原激活蛋白激酶(MAPK)信号通路介导的下游基因转录调控和表观遗传学调控.首先,MSK是MAPK通路的下游媒介分子.在丝裂原或应激刺激下,p38或ERK激酶通过级联磷酸化激活MSK蛋白.然后,活化的MSK介导转录因子磷酸化活化和组蛋白H3的10位丝氨酸磷酸化.MSK介导的组蛋白H3磷酸化,可引发组蛋白乙酰化和甲基化修饰的动态变化,相互协同或拮抗,开放染色质结构,利于诱导型基因的表达.除组蛋白H3外,MSK直接磷酸化的下游底物还包括CREB、NF-κB等转录因子以及多个非转录相关蛋白.因此,MSK能在多层次调控基因表达和细胞功能,广泛参与肿瘤转化、炎症反应、神经突触可塑性以及心肌肥大等生物学事件.本文将简要介绍MSK蛋白的研究进展,探讨其在转录调控、表观遗传学修饰等生物学事件中的作用.  相似文献   

14.
Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号