首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pds5p and the cohesin complex are required for sister chromatid cohesion and localize to the same chromosomal loci over the same cell cycle window. However, Pds5p and the cohesin complex likely have distinct roles in cohesion. We report that pds5 mutants establish cohesion, but during mitosis exhibit precocious sister dissociation. Thus, unlike the cohesin complex, which is required for cohesion establishment and maintenance, Pds5p is required only for maintenance. We identified SMT4, which encodes a SUMO isopeptidase, as a high copy suppressor of both the temperature sensitivity and precocious sister dissociation of pds5 mutants. In contrast, SMT4 does not suppress temperature sensitivity of cohesin complex mutants. Pds5p is SUMO conjugated, with sumoylation peaking during mitosis. SMT4 overexpression reduces Pds5p sumoylation, whereas smt4 mutants have increased Pds5p sumoylation. smt4 mutants were previously shown to be defective in cohesion maintenance during mitosis. These data provide the first link between a protein required for cohesion, Pds5p, and sumoylation, and suggest that Pds5p sumoylation promotes the dissolution of cohesion.  相似文献   

2.
Sister chromatid cohesion is established during S phase and maintained until anaphase. The cohesin complex (Mcd1p/Scc1p, Smc1p, Smc3p Irr1p/Scc3p in budding yeast) serves a structural role as it is required at all times when cohesion exists. Pds5p co-localizes temporally and spatially with cohesin on chromosomes but is thought to serve as a regulator of cohesion maintenance during mitosis. In contrast, Ctf7p/Eco1p is required during S phase for establishment but is not required during mitosis. Here we provide genetic and biochemical evidence that the pathways of cohesion establishment and maintenance are intimately linked. Our results show that mutants in ctf7 and pds5 are synthetically lethal. Moreover, over-expression of either CTF7 or PDS5 exhibits reciprocal suppression of the other mutant’s temperature sensitivity. The suppression by CTF7 is specific for pds5 mutants as CTF7 over-expression increases the temperature sensitivity of an mcd1 mutant but has no effect on smc1 or smc3 mutants. Three additional findings provide new insights into the process of cohesion establishment. First, over-expression of ctf7 alleles deficient in acetylase activity exhibit significantly reduced suppression of the pds5 mutant but exacerbated toxicity to the mcd1 mutant. Second, using chromosome spreads and chromatin immuno-precipitation, we find neither cohesin complex nor Pds5p chromosomal localization is altered in ctf7 mutants. Finally, biochemical analysis reveals that Ctf7p and Pds5p co-immunoprecipitate, which physically links these regulators of cohesion establishment and maintenance. We propose a model whereby Ctf7p and Pds5p co-operate to facilitate efficient establishment by mediating changes in cohesin complex on chromosomes after its deposition.  相似文献   

3.
Pds5p is a cohesin related protein. It is required for maintenance of sister chromatid cohesion in mitosis and meiosis. Here we report that pds5-1 causes cell death in yeast Saccharomyces cerevisiae during early meiosis. The pds5-1 caused cell death possesses characteristics of apoptosis and necrosis, including externalization of phosphatidylserine at cytoplasmic membrane, accumulation of DNA breaks, chromatin condensation and fragmentation, nuclei fragmentation, membrane degeneration and cell size enlargement. Our results also suggest that (1) The defect of DNA repair; (2) The production of reactive oxygen species, in pds5-1 mutant are involved in pds5-1 induced cell death.  相似文献   

4.
Sister-chromatid separation at the metaphase–anaphase transition is regulated by a proteolytic cascade. Destruction of the securin Pds1p liberates the Esp1p separase, which ultimately targets the mitotic cohesin Mcd1p/Scc1p for destruction. Pds1p stabilization by the spindle or DNA damage checkpoints prevents sister-chromatid separation while mutants lacking PDS1 (pds1Δ) are temperature sensitive for growth due to elevated chromosome loss. This report examined the role of the budding yeast Pds1p in meiotic progression using genetic, cytological, and biochemical assays. Similar to its mitotic function, Pds1p destruction is required for metaphase I–anaphase I transition. However, even at the permissive temperature for growth, pds1Δ mutants arrest with prophase I spindle and nuclear characteristics. This arrest was partially suppressed by preventing recombination initiation or by inactivating a subset of recombination checkpoint components. Further studies revealed that Pds1p is required for recombination in both double-strand-break formation and synaptonemal complex assembly. Although deleting PDS1 did not affect the degradation of the meiotic cohesin Rec8p, Mcd1p was precociously destroyed as cells entered the meiotic program. This role is meiosis specific as Mcd1p destruction is not altered in vegetative pds1Δ cultures. These results define a previously undescribed role for Pds1p in cohesin maintenance, recombination, and meiotic progression.  相似文献   

5.
During meiosis, homologues become juxtaposed and synapsed along their entire length. Mutations in the cohesin complex disrupt not only sister chromatid cohesion but also homologue pairing and synaptonemal complex formation. In this study, we report that Pds5, a cohesin-associated protein known to regulate sister chromatid cohesion, is required for homologue pairing and synapsis in budding yeast. Pds5 colocalizes with cohesin along the length of meiotic chromosomes. In the absence of Pds5, the meiotic cohesin subunit Rec8 remains bound to chromosomes with only minor defects in sister chromatid cohesion, but sister chromatids synapse instead of homologues. Double-strand breaks (DSBs) are formed but are not repaired efficiently. In addition, meiotic chromosomes undergo hypercondensation. When the mitotic cohesin subunit Mcd1 is substituted for Rec8 in Pds5-depleted cells, chromosomes still hypercondense, but synapsis of sister chromatids is abolished. These data suggest that Pds5 modulates the Rec8 activity to facilitate chromosome morphological changes required for homologue synapsis, DSB repair, and meiotic chromosome segregation.  相似文献   

6.
Sister‐chromatid cohesion mediated by the cohesin complex is fundamental for precise chromosome segregation in mitosis. Through binding the cohesin subunit Pds5, Wapl releases the bulk of cohesin from chromosome arms in prophase, whereas centromeric cohesin is protected from Wapl until anaphase onset. Strong centromere cohesion requires centromeric localization of the mitotic histone kinase Haspin, which is dependent on the interaction of its non‐catalytic N‐terminus with Pds5B. It remains unclear how Haspin fully blocks the Wapl–Pds5B interaction at centromeres. Here, we show that the C‐terminal kinase domain of Haspin (Haspin‐KD) binds and phosphorylates the YSR motif of Wapl (Wapl‐YSR), thereby directly inhibiting the YSR motif‐dependent interaction of Wapl with Pds5B. Cells expressing a Wapl‐binding‐deficient mutant of Haspin or treated with Haspin inhibitors show centromeric cohesion defects. Phospho‐mimetic mutation in Wapl‐YSR prevents Wapl from binding Pds5B and releasing cohesin. Forced targeting Haspin‐KD to centromeres partly bypasses the need for Haspin–Pds5B interaction in cohesion protection. Taken together, these results indicate a kinase‐dependent role for Haspin in antagonizing Wapl and protecting centromeric cohesion in mitosis.  相似文献   

7.
Genome stability depends on faithful chromosome segregation, which relies on maintenance of chromatid cohesion during S phase. In eukaryotes, Pds1/securin is the only known inhibitor that can prevent loss of cohesion. However, pds1Δ yeast cells and securin-null mice are viable. We sought to identify redundant mechanisms that promote cohesion within S phase in the absence of Pds1 and found that cells lacking the S-phase cyclins Clb5 and Clb6 have a cohesion defect under conditions of replication stress. Similar to the phenotype of pds1Δ cells, loss of cohesion in cells lacking Clb5 and Clb6 is dependent on Esp1. However, Pds1 phosphorylation by Cdk-cyclin is not required for cohesion. Moreover, cells lacking Clb5, Clb6, and Pds1 are inviable and lose cohesion during an unperturbed S phase, indicating that Pds1 and specific B-type cyclins promote cohesion independently of one another. Consistent with this, we find that Mcd1/Scc1 is less abundant on chromosomes in cells lacking Clb5 and Clb6 during replication stress. However, clb5Δ clb6Δ cells do accumulate Mcd1/Scc1 at centromeres upon mitotic arrest, suggesting that the cyclin-dependent mechanism is S phase specific. These data indicate that Clb5 and Clb6 promote cohesion which is then protected by Pds1 and that both mechanisms are required during replication stress.  相似文献   

8.
Cohesin mediates sister chromatid cohesion and contributes to the organization of interphase chromatin through DNA looping. In vertebrate somatic cells, cohesin consists of Smc1, Smc3, Rad21, and either SA1 or SA2. Three additional factors Pds5, Wapl, and Sororin bind to cohesin and modulate its dynamic association with chromatin. There are two Pds5 proteins in vertebrates, Pds5A and Pds5B, but their functional specificity remains unclear. Here, we demonstrate that Pds5 proteins are essential for cohesion establishment by allowing Smc3 acetylation by the cohesin acetyl transferases (CoATs) Esco1/2 and binding of Sororin. While both proteins contribute to telomere and arm cohesion, Pds5B is specifically required for centromeric cohesion. Furthermore, reduced accumulation of Aurora B at the inner centromere region in cells lacking Pds5B impairs its error correction function, promoting chromosome mis‐segregation and aneuploidy. Our work supports a model in which the composition and function of cohesin complexes differs between different chromosomal regions.  相似文献   

9.
Proper control of cohesion along the chromosome arms is essential for segregation of homologous chromosomes in meiosis. In a recent study we reported that Tid1p, a protein previously implicated in recombination, is required for resolution of Mcd1p-dependent cohesion in meiosis. Here we demonstrate that Pds5p and Dmc1p promote this cohesion. Pds5p is known to be required for maintenance of cohesion while Dmc1p is recognized as essential for meiotic recombination. Finding that the same defect in separation of sister chromatids could be suppressed by disrupting the functions of these proteins supports the emerging recognition that cohesion is remodeled during recombination and further indicates that cohesion is modified specifically to regulate meiotic recombination. We also find that overexpression of the regulatory subunit of Cdc7p kinase, Dbf4p, suppresses the tid1Δ sporulation defect, suggesting a role for Cdc7p/Dbf4p in regulating cohesion.  相似文献   

10.
11.
The cohesin complex, which is essential for sister chromatid cohesion and chromosome segregation, also inhibits resolution of sister chromatid intertwinings (SCIs) by the topoisomerase Top2. The cohesin-related Smc5/6 complex (Smc5/6) instead accumulates on chromosomes after Top2 inactivation, known to lead to a buildup of unresolved SCIs. This suggests that cohesin can influence the chromosomal association of Smc5/6 via its role in SCI protection. Using high-resolution ChIP-sequencing, we show that the localization of budding yeast Smc5/6 to duplicated chromosomes indeed depends on sister chromatid cohesion in wild-type and top2-4 cells. Smc5/6 is found to be enriched at cohesin binding sites in the centromere-proximal regions in both cell types, but also along chromosome arms when replication has occurred under Top2-inhibiting conditions. Reactivation of Top2 after replication causes Smc5/6 to dissociate from chromosome arms, supporting the assumption that Smc5/6 associates with a Top2 substrate. It is also demonstrated that the amount of Smc5/6 on chromosomes positively correlates with the level of missegregation in top2-4, and that Smc5/6 promotes segregation of short chromosomes in the mutant. Altogether, this shows that the chromosomal localization of Smc5/6 predicts the presence of the chromatid segregation-inhibiting entities which accumulate in top2-4 mutated cells. These are most likely SCIs, and our results thus indicate that, at least when Top2 is inhibited, Smc5/6 facilitates their resolution.  相似文献   

12.
Huang J  Hsu JM  Laurent BC 《Molecular cell》2004,13(5):739-750
The fidelity of chromosome segregation requires that the cohesin protein complex bind together newly replicated sister chromatids both at centromeres and at discrete sites along chromosome arms. Segregation of the yeast 2 micro plasmid also requires cohesin, which is recruited to the plasmid partitioning locus. Here we report that the RSC chromatin-remodeling complex regulates the differential association of cohesin with centromeres and chromosome arms. RSC cycles on and off chromosomal arm and plasmid cohesin binding sites in a cell cycle-regulated manner 15 min preceding Mcd1p, the central cohesin subunit. We show that in rsc mutants Mcd1p fails to associate with chromosome arms but still binds to centromeres, and that consequently, the arm regions of mitotic sister chromosomes separate precociously while cohesion at centromeres is unaffected. Our data suggest a role for RSC in facilitating the loading of cohesin specifically onto chromosome arms, thereby ensuring sister chromatid cohesion and proper chromosome segregation.  相似文献   

13.
We report the isolation and characterization of pds1 mutants in Saccharomyces cerevisiae. The initial pds1-1 allele was identified by its inviability after transient exposure to microtubule inhibitors and its precocious dissociation of sister chromatids in the presence of these microtubule inhibitors. These findings suggest that pds1 mutants might be defective in anaphase arrest that normally is imposed by a spindle-damage checkpoint. To further examine a role for Pds1p in anaphase arrest, we compared the cell cycle arrest of pds1 mutants and PDS1 cells after: (a) the inactivation of Cdc16p or Cdc23p, two proteins that are required for the degradation of mitotic cyclins and are putative components of the yeast anaphase promoting complex (APC); (b) the inactivation of Cdc20p, another protein implicated in the degradation of mitotic cyclins; and (c) the inactivation of Cdc13 protein or gamma irradiation, two circumstances that induce a DNA- damage checkpoint. Under all these conditions, anaphase is inhibited in PDS1 cells but not in pds1 mutants. From these results we suggest that Pds1 protein is an anaphase inhibitor in PDS1 cells but not in pds1 mutants. From these results we suggest that Pds1 protein is an anaphase inhibitor that plays a critical role in the control of anaphase by both APC and checkpoints. We also show that pds1 mutants exit mitosis and initiate new rounds of cell division after gamma irradiation and Cdc13p inactivation but no after nocodazole-treatment or inactivation of Cdc16p, Cdc20p or Cdc23p function. Therefore, in the DNA-damage checkpoint, Pds1p is required for the inhibition of cytokinesis and DNA replication as well as anaphase. The role of Pds1 protein in anaphase inhibition and general cell cycle regulation is discussed.  相似文献   

14.
The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.  相似文献   

15.
Sister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation during cell division. Using functional genomic screening, we identify a set of 26 pre-mRNA splicing factors that are required for sister chromatid cohesion in human cells. Loss of spliceosome subunits increases the dissociation rate of cohesin from chromatin and abrogates cohesion after DNA replication, ultimately causing mitotic catastrophe. Depletion of splicing factors causes defective processing of the pre-mRNA encoding sororin, a factor required for the stable association of cohesin with chromatin, and an associated reduction of sororin protein level. Expression of an intronless version of sororin and depletion of the cohesin release protein WAPL suppress the cohesion defect in cells lacking splicing factors. We propose that spliceosome components contribute to sister chromatid cohesion and mitotic chromosome segregation through splicing of sororin pre-mRNA. Our results highlight the loss of cohesion as an early cellular consequence of compromised splicing. This may have clinical implications because SF3B1, a splicing factor that we identify to be essential for cohesion, is recurrently mutated in chronic lymphocytic leukaemia.  相似文献   

16.
Sister chromatid cohesion is essential for chromosome segregation and is mediated by cohesin bound to DNA. Cohesin-DNA interactions can be reversed by the cohesion-associated protein Wapl, whereas a stably DNA-bound form of cohesin is thought to mediate cohesion. In vertebrates, Sororin is essential for cohesion and stable cohesin-DNA interactions, but how Sororin performs these functions is unknown. We show that DNA replication and cohesin acetylation promote binding of Sororin to cohesin, and that Sororin displaces Wapl from its binding partner Pds5. In the absence of Wapl, Sororin becomes dispensable for cohesion. We propose that Sororin maintains cohesion by inhibiting Wapl's ability to dissociate cohesin from DNA. Sororin has only been identified in vertebrates, but we show that many invertebrate species contain Sororin-related proteins, and that one of these, Dalmatian, is essential for cohesion in Drosophila. The mechanism we describe here may therefore be widely conserved among different species.  相似文献   

17.
Pds5 and Wpl1 act as anti-establishment factors preventing sister-chromatid cohesion until counteracted in S-phase by the cohesin acetyl-transferase Eso1. However, Pds5 is also required to maintain sister-chromatid cohesion in G2. Here, we show that Pds5 is essential for cohesin acetylation by Eso1 and ensures the maintenance of cohesion by promoting a stable cohesin interaction with replicated chromosomes. The latter requires Eso1 only in the presence of Wapl, indicating that cohesin stabilization relies on Eso1 only to neutralize the anti-establishment activity. We suggest that Eso1 requires Pds5 to counteract anti-establishment. This allows both cohesion establishment and Pds5-dependent stable cohesin binding to chromosomes.  相似文献   

18.
19.
BACKGROUND: Sister chromatid cohesion depends on a complex called cohesin, which contains at least four subunits: Smc1, Smc3, Scc1 and Scc3. Cohesion is established during DNA replication, is partially dismantled in many, but not all, organisms during prophase, and is finally destroyed at the metaphase-to-anaphase transition. A quite separate protein called Spo76 is required for sister chromatid cohesion during meiosis in the ascomycete Sordaria. Spo76-like proteins are highly conserved amongst eukaryotes and a homologue in Aspergillus nidulans, called BimD, is required for the completion of mitosis. The isolation of the cohesin subunit Smc3 as a suppressor of BimD mutations suggests that Spo76/BimD might function in the same process as cohesin. RESULTS: We show here that the yeast homologue of Spo76, called Pds5, is essential for establishing sister chromatid cohesion and maintaining it during metaphase. We also show that Pds5 co-localizes with cohesin on chromosomes, that the chromosomal association of Pds5 and cohesin is interdependent, that Scc1 recruits Pds5 to chromosomes in G1 and that its cleavage causes dissociation of Pds5 from chromosomes at the metaphase-to-anaphase transition. CONCLUSIONS: Our data show that Pds5 functions as part of the same process as cohesin. Sequence similarities and secondary structure predictions indicate that Pds5 consists of tandemly repeated HEAT repeats, and might therefore function as a protein-protein interaction scaffold, possibly in the cohesin-DNA complex assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号