首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Mre11/Rad50/NBS1 (MRN) complex is thought to be a critical sensor that detects damaged DNA and recruits ATM to DNA foci for activation. However, it remains to be established how the MRN complex regulates ATM recruitment to the DNA foci during DNA double-strand breaks (DSBs). Here we show that Skp2 E3 ligase is a key component for the MRN complex-mediated ATM activation in response to DSBs. Skp2 interacts with NBS1 and triggers K63-linked ubiquitination of NBS1 upon DSBs, which is critical for the interaction of NBS1 with ATM, thereby facilitating ATM recruitment to the DNA foci for activation. Finally, we show that Skp2 deficiency exhibits a defect in homologous recombination (HR) repair, thereby increasing IR sensitivity. Our results provide molecular insights into how Skp2 and the MRN complex coordinate to activate ATM, and identify Skp2-mediatetd NBS1 ubiquitination as a vital event for ATM activation in response to DNA damage.  相似文献   

3.
4.
5.
The MRE11-RAD50-Nijmegen breakage syndrome 1 (NBS1 [MRN]) complex accumulates at sites of DNA double-strand breaks (DSBs) in microscopically discernible nuclear foci. Focus formation by the MRN complex is dependent on MDC1, a large nuclear protein that directly interacts with phosphorylated H2AX. In this study, we identified a region in MDC1 that is essential for the focal accumulation of the MRN complex at sites of DNA damage. This region contains multiple conserved acidic sequence motifs that are constitutively phosphorylated in vivo. We show that these motifs are efficiently phosphorylated by caseine kinase 2 (CK2) in vitro and directly interact with the N-terminal forkhead-associated domain of NBS1 in a phosphorylation-dependent manner. Mutation of these conserved motifs in MDC1 or depletion of CK2 by small interfering RNA disrupts the interaction between MDC1 and NBS1 and abrogates accumulation of the MRN complex at sites of DNA DSBs in vivo. Thus, our data reveal the mechanism by which MDC1 physically couples the MRN complex to damaged chromatin.  相似文献   

6.
Double-strand breaks (DSBs) elicit a DNA damage response, resulting in checkpoint-mediated cell-cycle delay and DNA repair. The Saccharomyces cerevisiae Sae2 protein is known to act together with the MRX complex in meiotic DSB processing, as well as in DNA damage response during the mitotic cell cycle. Here, we report that cells lacking Sae2 fail to turn off both Mec1- and Tel1-dependent checkpoints activated by a single irreparable DSB, and delay Mre11 foci disassembly at DNA breaks, indicating that Sae2 may negatively regulate checkpoint signalling by modulating MRX association at damaged DNA. Consistently, high levels of Sae2 prevent checkpoint activation and impair MRX foci formation in response to unrepaired DSBs. Mec1- and Tel1-dependent Sae2 phosphorylation is necessary for these Sae2 functions, suggesting that the two kinases, once activated, may regulate checkpoint switch off through Sae2-mediated inhibition of MRX signalling.  相似文献   

7.
We developed a novel system to create DNA double-strand breaks (DSBs) at defined endogenous sites in the human genome, and used this system to detect protein recruitment and loss at and around these breaks by chromatin immunoprecipitation (ChIP). The detection of human ATM protein at site-specific DSBs required functional NBS1 protein, ATM kinase activity and ATM autophosphorylation on Ser 1981. DSB formation led to the localized disruption of nucleosomes, a process that depended on both functional NBS1 and ATM. These two proteins were also required for efficient recruitment of the repair cofactor XRCC4 to DSBs, and for efficient DSB repair. These results demonstrate the functional importance of ATM kinase activity and phosphorylation in the response to DSBs, and support a model in which ordered chromatin structure changes that occur after DNA breakage depend on functional NBS1 and ATM, and facilitate DNA DSB repair.  相似文献   

8.
Mammalian cells respond to DNA double-strand breaks (DSBs) by recruiting DNA repair and cell-cycle checkpoint proteins to such sites. Central to these DNA damage response (DDR) events is the DNA damage mediator protein MDC1. MDC1 interacts with several DDR proteins, including the MRE11–RAD50–NBS1 (MRN) complex. Here, we show that MDC1 is phosphorylated on a cluster of conserved repeat motifs by casein kinase 2 (CK2). Moreover, we establish that this phosphorylation of MDC1 promotes direct, phosphorylation-dependent interactions with NBS1 in a manner that requires the closely apposed FHA and twin BRCT domains in the amino terminus of NBS1. Finally, we show that these CK2-targeted motifs in MDC1 are required to mediate NBS1 association with chromatin-flanking sites of unrepaired DSBs. These findings provide a molecular explanation for the MDC1–MRN interaction and yield insights into how MDC1 coordinates the focal assembly and activation of several DDR factors in response to DNA damage.  相似文献   

9.
Accumulation of DNA damage may play an essential role in both cellular senescence and organismal aging. The ability of cells to sense and repair DNA damage declines with age. However, the underlying molecular mechanism for this age-dependent decline is still elusive. To understand quantitative and qualitative changes in the DNA damage response during human aging, DNA damage-induced foci of phosphorylated histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs) and eroded telomeres, were examined in human young and senescing fibroblasts, and in lymphocytes of peripheral blood. Here, we show that the incidence of endogenous γ-H2AX foci increases with age. Fibroblasts taken from patients with Werner syndrome, a disorder associated with premature aging, genomic instability and increased incidence of cancer, exhibited considerably higher incidence of γ-H2AX foci than those taken from normal donors of comparable age. Further increases in γ-H2AX focal incidence occurred in culture as both normal and Werner syndrome fibroblasts progressed toward senescence. The rates of recruitment of DSB repair proteins to γ-H2AX foci correlated inversely with age for both normal and Werner syndrome donors, perhaps due in part to the slower growth of γ-H2AX foci in older donors. Because genomic stability may depend on the efficient processing of DSBs, and hence the rapid formation of γ-H2AX foci and the rapid accumulation of DSB repair proteins on these foci at sites of nascent DSBs, our findings suggest that decreasing efficiency in these processes may contribute to genome instability associated with normal and pathological aging.  相似文献   

10.
During the DNA damage response (DDR), chromatin modifications contribute to localization of 53BP1 to sites of DNA double-strand breaks (DSBs). 53BP1 is phosphorylated during the DDR, but it is unclear whether phosphorylation is directly coupled to chromatin binding. In this study, we used human diploid fibroblasts and HCT116 tumor cells to study 53BP1 phosphorylation at Serine-25 and Serine-1778 during endogenous and exogenous DSBs (DNA replication and whole-cell or sub-nuclear microbeam irradiation, respectively). In non-stressed conditions, endogenous DSBs in S-phase cells led to accumulation of 53BP1 and γH2AX into discrete nuclear foci. Only the frank collapse of DNA replication forks following hydroxyurea treatment initiated 53BP1Ser25 and 53BP1Ser1778 phosphorylation. In response to exogenous DSBs, 53BP1Ser25 and 53BP1Ser1778 phosphoforms localized to sites of initial DSBs in a cell cycle-independent manner. 53BP1 phosphoforms also localized to late residual foci and associated with PML-NBs during IR-induced senescence. Using isogenic cell lines and small-molecule inhibitors, we observed that DDR-induced 53BP1 phosphorylation was dependent on ATM and DNA-PKcs kinase activity but independent of MRE11 sensing or RNF168 chromatin remodeling. However, loss of RNF168 blocked recruitment of phosphorylated 53BP1 to sites of DNA damage. Our results uncouple 53BP1 phosphorylation from DSB localization and support parallel pathways for 53BP1 biology during the DDR. As relative 53BP1 expression may be a biomarker of DNA repair capacity in solid tumors, the tracking of 53BP1 phosphoforms in situ may give unique information regarding different cancer phenotypes or response to cancer treatment.  相似文献   

11.
12.
13.
14.
BACKGROUND: The response of eukaryotic cells to double-strand breaks in genomic DNA includes the sequestration of many factors into nuclear foci. Recently it has been reported that a member of the histone H2A family, H2AX, becomes extensively phosphorylated within 1-3 minutes of DNA damage and forms foci at break sites. RESULTS: In this work, we examine the role of H2AX phosphorylation in focus formation by several repair-related complexes, and investigate what factors may be involved in initiating this response. Using two different methods to create DNA double-strand breaks in human cells, we found that the repair factors Rad50 and Rad51 each colocalized with phosphorylated H2AX (gamma-H2AX) foci after DNA damage. The product of the tumor suppressor gene BRCA1 also colocalized with gamma-H2AX and was recruited to these sites before Rad50 or Rad51. Exposure of cells to the fungal inhibitor wortmannin eliminated focus formation by all repair factors examined, suggesting a role for the phosphoinositide (PI)-3 family of protein kinases in mediating this response. Wortmannin treatment was effective only when it was added early enough to prevent gamma-H2AX formation, indicating that gamma-H2AX is necessary for the recruitment of other factors to the sites of DNA damage. DNA repair-deficient cells exhibit a substantially reduced ability to increase the phosphorylation of H2AX in response to ionizing radiation, consistent with a role for gamma-H2AX in DNA repair. CONCLUSIONS: The pattern of gamma-H2AX foci that is established within a few minutes of DNA damage accounts for the patterns of Rad50, Rad51, and Brca1 foci seen much later during recovery from damage. The evidence presented strongly supports a role for the gamma-H2AX and the PI-3 protein kinase family in focus formation at sites of double-strand breaks and suggests the possibility of a change in chromatin structure accompanying double-strand break repair.  相似文献   

15.
Requirement of the MRN complex for ATM activation by DNA damage   总被引:34,自引:0,他引:34  
The ATM protein kinase is a primary activator of the cellular response to DNA double-strand breaks (DSBs). In response to DSBs, ATM is activated and phosphorylates key players in various branches of the DNA damage response network. ATM deficiency causes the genetic disorder ataxia-telangiectasia (A-T), characterized by cerebellar degeneration, immunodeficiency, radiation sensitivity, chromosomal instability and cancer predisposition. The MRN complex, whose core contains the Mre11, Rad50 and Nbs1 proteins, is involved in the initial processing of DSBs. Hypomorphic mutations in the NBS1 and MRE11 genes lead to two other genomic instability disorders: the Nijmegen breakage syndrome (NBS) and A-T like disease (A-TLD), respectively. The order in which ATM and MRN act in the early phase of the DSB response is unclear. Here we show that functional MRN is required for ATM activation, and consequently for timely activation of ATM-mediated pathways. Collectively, these and previous results assign to components of the MRN complex roles upstream and downstream of ATM in the DNA damage response pathway and explain the clinical resemblance between A-T and A-TLD.  相似文献   

16.
hSSB1 is a newly discovered single-stranded DNA (ssDNA)-binding protein that is essential for efficient DNA double-strand break signalling through ATM. However, the mechanism by which hSSB1 functions to allow efficient signalling is unknown. Here, we show that hSSB1 is recruited rapidly to sites of double-strand DNA breaks (DSBs) in all interphase cells (G1, S and G2) independently of, CtIP, MDC1 and the MRN complex (Rad50, Mre11, NBS1). However expansion of hSSB1 from the DSB site requires the function of MRN. Strikingly, silencing of hSSB1 prevents foci formation as well as recruitment of MRN to sites of DSBs and leads to a subsequent defect in resection of DSBs as evident by defective RPA and ssDNA generation. Our data suggests that hSSB1 functions upstream of MRN to promote its recruitment at DSBs and is required for efficient resection of DSBs. These findings, together with previous work establish essential roles of hSSB1 in controlling ATM activation and activity, and subsequent DSB resection and homologous recombination (HR).  相似文献   

17.
Phosphorylated histone H2AX (γ-H2AX) functions in the recruitment of DNA damage response proteins to DNA double-strand breaks (DSBs) and facilitates DSB repair. ATM also co-localizes with γ-H2AX at DSB sites following its auto-phosphorylation. However, it is unclear whether γ-H2AX has a role in activation of ATM-dependent cell cycle checkpoints. Here, we show that ATM as well as NBS1 is recruited to damaged-chromatin in a γ-H2AX-dependent manner. Foci formation of phosphorylated ATM and ATM-dependent phosphorylation is repressed in H2AX-knockdown cells. Furthermore, anti-γ-H2AX antibody co-immunoprecipitates an ATM-like protein kinase activity in vitro and recombinant H2AX increases in vitro kinase activity of ATM from un-irradiated cells. Moreover, H2AX-deficient cells exhibited a defect in ATM-dependent cell cycle checkpoints. Taken together, γ-H2AX has important role for effective DSB-dependent activation of ATM-related damage responses via NBS1.  相似文献   

18.
Polycomb-repressive complex 1 (PRC1)-mediated histone ubiquitylation plays an important role in aberrant gene silencing in human cancers and is a potential target for cancer therapy. Here we show that 2-pyridine-3-yl-methylene-indan-1,3-dione (PRT4165) is a potent inhibitor of PRC1-mediated H2A ubiquitylation in vivo and in vitro. The drug also inhibits the accumulation of all detectable ubiquitin at sites of DNA double-strand breaks (DSBs), the retention of several DNA damage response proteins in foci that form around DSBs, and the repair of the DSBs. In vitro E3 ubiquitin ligase activity assays revealed that PRT4165 inhibits both RNF2 and RING 1A, which are partially redundant paralogues that together account for the E3 ubiquitin ligase activity found in PRC1 complexes, but not RNF8 nor RNF168. Because ubiquitylation is completely inhibited despite the efficient recruitment of RNF8 to DSBs, our results suggest that PRC1-mediated monoubiquitylation is required for subsequent RNF8- and/or RNF168-mediated polyubiquitylation. Our results demonstrate the unique feature of PRT4165 as a novel chromatin-remodeling compound and provide a new tool for the inhibition of ubiquitylation signaling at DNA double-strand breaks.  相似文献   

19.
Double strand breaks (DSBs) are the most deleterious of the DNA lesions that initiate genomic instability and promote tumorigenesis. Cells have evolved a complex protein network to detect, signal, and repair DSBs. In mammalian cells, a key component in this network is H2AX, which becomes rapidly phosphorylated at Ser(139) (γ-H2AX) at DSBs. Here we show that monoubiquitination of H2AX mediated by the RNF2-BMI1 complex is critical for the efficient formation of γ-H2AX and functions as a proximal regulator in DDR (DNA damage response). RNF2-BMI1 interacts with H2AX in a DNA damage-dependent manner and is required for monoubiquitination of H2AX at Lys(119)/Lys(120). As a functional consequence, we show that the H2AX K120R mutant abolishes H2AX monoubiquitination, impairs the recruitment of p-ATM (Ser(1981)) to DSBs, and thereby reduces the formation of γ-H2AX and the recruitment of MDC1 to DNA damage sites. These data suggest that monoubiquitination of H2AX plays a critical role in initiating DNA damage signaling. Consistent with these observations, impairment of RNF2-BMI1 function by siRNA knockdown or overexpression of the ligase-dead RNF2 mutant all leads to significant defects both in accumulation of γ-H2AX, p-ATM, and MDC1 at DSBs and in activation of NBS1 and CHK2. Additionally, the regulatory effect of RNF2-BMI1 on γ-H2AX formation is dependent on ATM. Lacking their ability to properly activate the DNA damage signaling pathway, RNF2-BMI1 complex-depleted cells exhibit impaired DNA repair and increased sensitivity to ionizing radiation. Together, our findings demonstrate a distinct monoubiquitination-dependent mechanism that is required for H2AX phosphorylation and the initiation of DDR.  相似文献   

20.
The focal accumulation of DNA repair factors, including the MRE11/Rad50/NBS1 (MRN) complex and the phospho-histone variant γ-H2A.X, is a key cytological feature of the DNA damage response (DDR). Although these foci have been extensively studied by light microscopy, there is comparatively little known regarding their ultrastructure. Using correlative light microscopy and electron spectroscopic imaging (LM/ESI) we have characterized the ultrastructure of chromatin and DNA repair foci within the nuclei of normal human fibroblasts in response to DNA double-strand breaks (DSBs). The induction of DNA DSBs by etoposide leads to a global decrease in chromatin density, which is accompanied by the formation of invaginations of the nuclear envelope as revealed by live-cell microscopy. Using LM/ESI and the immunogold localization of γ-H2A.X and MRE11 within repair foci, we also observed decondensed 10nm chromatin fibers within repair foci and the accumulation of large non-chromosomal protein complexes over three hours recovery from etoposide. At 18 h after etoposide treatment, we observed a close juxtapositioning of PML nuclear bodies and late repair foci of γ-H2A.X, which exhibited a highly organized chromatin arrangement distinct from earlier repair foci. Finally, the dual immunogold labeling of MRE11 with either γ-H2A.X or NBS1 revealed that γ-H2A.X and the MRN complex are sub-compartmentalized within repair foci at the sub-micron scale. Together these data provide the first ultrastructural comparison of γ-H2A.X and MRN DNA repair foci, which are structurally dynamic over time and strikingly similar in organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号