首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. This article is part of a Special Section entitled: Cell Death Pathways. Guest Editors: Frank Madeo and Slaven Stekovic.  相似文献   

2.
Cell death has historically been subdivided into regulated and unregulated mechanisms. Apoptosis, a form of regulated cell death, reflects a cell's decision to die in response to cues and is executed by intrinsic cellular machinery. Unregulated cell death (often called necrosis) is caused by overwhelming stress that is incompatible with cell survival. Emerging evidence, however, suggests that these two processes do not adequately explain the various cell death mechanisms. Recent data point to the existence of multiple non-apoptotic, regulated cell death mechanisms, some of which overlap or are mutually exclusive with apoptosis. Here we examine how and why these different cell death programmes have evolved, with an eye towards new cytoprotective therapeutic opportunities.  相似文献   

3.
The exposure of phosphatidylserine (PS) on the outer plasma membrane has long been considered a unique feature of apoptotic cells. Together with other “eat me” signals, it enables the recognition and phagocytosis of dying cells (efferocytosis), helping to explain the immunologically-silent nature of apoptosis. Recently, however, PS exposure has also been reported in non-apoptotic forms of regulated inflammatory cell death, such as necroptosis, challenging previous dogma. In this review, we outline the evidence for PS exposure in non-apoptotic cells and extracellular vesicles (EVs), and discuss possible mechanisms based on our knowledge of apoptotic-PS exposure. In addition, we examine the outcomes of non-apoptotic PS exposure, including the reversibility of cell death, efferocytosis, and consequent inflammation. By examining PS biology, we challenge the established approach of distinguishing apoptosis from other cell death pathways by AnnexinV staining of PS externalization. Finally, we re-evaluate how PS exposure is thought to define apoptosis as an immunologically silent process distinct from other non-apoptotic and inflammatory cell death pathways. Ultimately, we suggest that a complete understanding of how regulated cell death processes affect the immune system is far from being fully elucidated.  相似文献   

4.
Ludovico P  Madeo F  Silva M 《IUBMB life》2005,57(3):129-135
Yeasts as eukaryotic microorganisms with simple, well known and tractable genetics, have long been powerful model systems for studying complex biological phenomena such as the cell cycle or vesicle fusion. Until recently, yeast has been assumed as a cellular 'clean room' to study the interactions and the mechanisms of action of mammalian apoptotic regulators. However, the finding of an endogenous programmed cell death (PCD) process in yeast with an apoptotic phenotype has turned yeast into an 'unclean' but even more powerful model for apoptosis research. Yeast cells appear to possess an endogenous apoptotic machinery including its own regulators and pathway(s). Such machinery may not exactly recapitulate that of mammalian systems but it represents a simple and valuable model which will assist in the future understanding of the complex connections between apoptotic and non-apoptotic mammalian PCD pathways. Following this line of thought and in order to validate and make the most of this promising cell death model, researchers must undoubtedly address the following issues: what are the crucial yeast PCD regulators? How do they play together? What are the cell death pathways shared by yeast and mammalian PCD? Solving these questions is currently the most pressing challenge for yeast cell death researchers.  相似文献   

5.
Over the past decades, apoptosis emerged as a leading strategy to eliminate cancer cells. Nowadays, it becomes progressively clear that apoptosis is not the only programmed cell death mechanism implicated in the elimination of malignant cells. This review will discuss non-apoptotic cell death modalities and will focus on natural compounds acting as inducers of these recently described processes. We will describe the major molecular characteristics of each individual death mechanism and we will detail the effects of natural and naturally-derived compounds on these cellular mechanisms.  相似文献   

6.
Photodynamic therapy (PDT) is a recently developed anticancer modality utilizing the generation of singlet oxygen and other reactive oxygen species, through visible light irradiation of a photosensitive dye accumulated in the cancerous tissue. Multiple signaling cascades are concomitantly activated in cancer cells exposed to the photodynamic stress and depending on the subcellular localization of the damaging ROS, these signals are transduced into adaptive or cell death responses. Recent evidence indicates that PDT can kill cancer cells directly by the efficient induction of apoptotic as well as non-apoptotic cell death pathways. The identification of the molecular effectors regulating the cross-talk between apoptosis and other major cell death subroutines (e.g. necrosis, autophagic cell death) is an area of intense research in cancer therapy. Signaling molecules modulating the induction of different cell death pathways can become useful targets to induce or increase photokilling in cancer cells harboring defects in apoptotic pathways, which is a crucial step in carcinogenesis and therapy resistance. This review highlights recent developments aimed at deciphering the molecular interplay between cell death pathways as well as their possible therapeutic exploitation in photosensitized cells.  相似文献   

7.
8.
The concept of cell death has been expanded beyond apoptosis and necrosis to additional forms, including necroptosis, pyroptosis, autophagy, and ferroptosis. These cell death modalities play a critical role in all aspects of life, which are noteworthy for their diverse roles in diseases. Atherosclerosis (AS) and vascular calcification (VC) are major causes for the high morbidity and mortality of cardiovascular disease. Despite considerable advances in understanding the signaling pathways associated with AS and VC, the exact molecular basis remains obscure. In the article, we review the molecular mechanisms that mediate cell death and its implications for AS and VC. A better understanding of the mechanisms underlying cell death in AS and VC may drive the development of promising therapeutic strategies.Subject terms: Calcification, Cell death  相似文献   

9.
Several receptors that mediate apoptosis have been identified, such as Fas and tumor necrosis factor receptor I. Studies of the signal transduction pathways utilized by these receptors have played an important role in the understanding of apoptosis. Here we report the first ligand-receptor pair-the neuropeptide substance P and its receptor, neurokinin-1 receptor (NK(1)R)-that mediates an alternative, non-apoptotic form of programmed cell death. This pair is widely distributed in the central and peripheral nervous systems, and has been implicated in pain mediation and depression, among other effects. Here we demonstrate that substance P induces a non-apoptotic form of programmed cell death in hippocampal, striatal, and cortical neurons. This cell death requires gene expression, displays a non-apoptotic morphology, and is independent of caspase activation. The same form of cell death is induced by substance P in NK(1)R-transfected human embryonic kidney cells. These results argue that NK(1)R activates a death pathway different than apoptosis, and provide a signal transduction system by which to study an alternative, non-apoptotic cell death program.  相似文献   

10.
Cell death can be a highly regulated process. A large and growing number of mammalian cell death mechanisms have been described over the past few decades. Major pathways with established roles in normal or disease biology include apoptosis, necroptosis, pyroptosis and ferroptosis. However, additional non-apoptotic cell death mechanisms with unique morphological, genetic, and biochemical features have also been described. These mechanisms may play highly specialized physiological roles or only become activated in response to specific lethal stimuli or conditions. Understanding the nature of these emerging and understudied mechanisms may provide new insight into cell death biology and suggest new treatments for diseases such as cancer and neurodegeneration.  相似文献   

11.

Background

Stem cell therapy is a strategy far from being satisfactory and applied in the clinic. Poor survival and differentiation levels of stem cells after transplantation or neural injury have been major problems. Recently, it has been recognized that cell death-relevant proteins, notably those that operate in the core of the executioner apoptosis machinery are functionally involved in differentiation of a wide range of cell types, including neural cells.

Scope of review

This article will review recent studies on the mechanisms underlying the non-apoptotic function of mitochondrial and death receptor signaling pathways during neural differentiation. In addition, we will discuss how these major apoptosis-regulatory pathways control the decision between differentiation, self-renewal and cell death in neural stem cells and how levels of activity are restrained to prevent cell loss as final outcome.

Major conclusions

Emerging evidence suggests that, much like p53, caspases and Bcl-2 family members, the two prime triggers of cell death pathways, death receptors and mitochondria, may influence proliferation and differentiation potential of stem cells, neuronal plasticity, and astrocytic versus neuronal stem cell fate decision.

General significance

A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation as an alternative to cell death will surely contribute to improve neuro-replacement strategies.  相似文献   

12.
Cell death pathways such as apoptosis can be activated in response to oxidative stress, enabling the disposal of damaged cells. In contrast, controlled intracellular redox events are proposed to be a significant event during apoptosis signaling, regardless of the initiating stimulus. In this scenario oxidants act as second messengers, mediating the post-translational modification of specific regulatory proteins. The exact mechanism of this signaling is unclear, but increased understanding offers the potential to promote or inhibit apoptosis through modulating the redox environment of cells. Peroxiredoxins are thiol peroxidases that remove hydroperoxides, and are also emerging as important players in cellular redox signaling. This review discusses the potential role of peroxiredoxins in the regulation of apoptosis, and also their ability to act as biomarkers of redox changes during the initiation and progression of cell death.  相似文献   

13.
In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before 48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced cell death.During the first 30 hours after imatinib deprivation, Bcr-Abl hyper-activation did not affect proliferation but resulted in cellular swelling, vacuolization, and induction of eIF2α phosphorylation, CHOP expression, as well as alternative splicing of XPB, indicating endoplasmic reticulum stress response. Cell death was dependent on p38 and RIP1 signaling, whereas classical death effectors of ER stress, namely CHOP-BIM were antagonized by concomitant up-regulation of Bcl-xL.Screening of 1,120 compounds for their potential effects on oncogenic stress-induced cell death uncovered that corticosteroids antagonize cell death upon Bcr-Abl hyper-activation by normalizing cellular metabolism. This protective effect is further demonstrated by the finding that corticosteroids rendered lymphocytes permissive to the transforming activity of Bcr-Abl. As corticosteroids are used together with imatinib for treatment of Bcr-Abl positive acute lymphoblastic leukemia these data could have important implications for the design of combination therapy protocols.In conclusion, excessive induction of Warburg type metabolic alterations can cause cell death. Our data indicate that these metabolic changes are major mediators of oncogenic stress induced by Bcr-Abl.  相似文献   

14.
Cyclosporine A (CsA), a widely used immunosuppressant shows cytotoxic effects by either inducing apoptosis or redirecting the cell towards non-apoptotic cell death. However, there still remains a lacuna in understanding the mechanism of CsA induced non-apoptotic cell death. In the present study we investigated calcineurin dependent or independent cytotoxic effects of CsA, a calcineurin inhibitor, in cervical cancerous SiHa cells. Decreased cell viability and massive cytoplasmic vacuolations were observed in CsA treated SiHa cells, having increased calcineurin activity. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR), accompanied by a decrease in cyclophilin B (ER resident PPIase), preceded the formation of the vacuoles. These vacuoles stained positive for many ER resident markers confirming their ER origin; but the absence of autophagosomal marker, LC3II, ruled out autophagy. Extensively vacuolated cells eventually undergo cell death which lacked the typical apoptotic features, but showed significant decrease in AIP (ALG2 interacting protein) as seen in paraptosis. ER-vacuolation was prevented by cycloheximide and salubrinal thereby indicating requirement of active protein synthesis. Inhibiting calcineurin activity by either Tacrolimus (FK506) or by knockdown of calcineurin B subunit did not result in either ER-stress or cellular vacuolation. However, knockdown of cyclophilin B by siRNA resulted in increased expression of Bip and IRE1α, together with cytoplasmic vacuolation. In conclusion, we report that persistent ER stress due to cyclophilin B inhibition in CsA treated cervical cancer cells caused cellular vacuolation which culminated in a non-apoptotic cell death response similar to paraptosis. Additionally, the paraptotic effects of CsA are independent of calcineurin inhibition.  相似文献   

15.
Oxidation-sensitive mechanisms,vascular apoptosis and atherosclerosis   总被引:1,自引:0,他引:1  
Increased generation of oxidants, resulting from disruption of aerobic metabolism and from respiratory burst, is an essential defense mechanism against pathogens and aberrant cells. However, oxidative stress can also trigger and enhance deregulated apoptosis or programmed cell death, characteristic of atherosclerotic lesions. Oxidation-sensitive mechanisms also modulate cellular signaling pathways that regulate vascular expression of cytokines and growth factors, and influence atherogenesis, in particular when increased levels of plasma lipoproteins provide ample substrate for lipid peroxidation and lead to increased formation of adducts with lipoprotein amino acids. In some cases, increased oxidation and apoptosis in a group of cells might be beneficial for survival and function of other groups of arterial cells. However, overall, oxidation and apoptosis appear to promote the progression of diseased arteries towards a lesion that is vulnerable to rupture, and to give rise to myocardial infarction and ischemic stroke. Recent rapid advances in our understanding of the interactions between oxidative stress, apoptosis and arterial gene regulation suggest that selective interventions targeting these biological functions have great therapeutic potential.  相似文献   

16.
Therapy resistance can be attributed to acquisition of anti-apoptotic mechanisms by the cancer cells. Therefore, developing approaches that trigger non-apoptotic cell death in cancer cells to compensate for apoptosis resistance will help to treat cancer effectively. Triple-negative breast cancers (TNBC) are among the most aggressive and therapy resistant to breast tumors. Here we report that manumycin A (Man A), an inhibitor of farnesyl protein transferase, reduces cancer cell viability through induction of non-apoptotic, non-autophagic cytoplasmic vacuolation death in TNBC cells. Man A persistently induced cytoplasmic vacuolation and cell death through the expression of microtubule-associated protein 1 light chain 3 (LC3) and p62 proteins along with endoplasmic reticulum (ER) stress markers, Bip and CHOP, and accumulation of ubiquitinated proteins. As inhibitors of apoptosis and autophagy failed to block cytoplasmic vacuolation and its associated protein expression or cell death, it appears that these processes are not involved in the death induced by Man A. Ability of thiol antioxidant, NAC in blocking Man A-induced vacuolation, death and its related protein expression suggests that sulfhydryl homeostasis may be the target of Man A. Surprisingly, normal human mammary epithelial cells failed to undergo cytoplasmic vacuolation and cell death, and grew normally in presence of Man A. In conjunction with its in vitro effects, Man A also reduced tumor burden in vivo in xenograft models that showed extensive cytoplasmic vacuoles and condensed nuclei with remarkable increase in the vacuolation-associated protein expression together with increase of p21, p27, PTEN and decrease of pAkt. Interestingly, Man A-mediated upregulation of p21, p27 and PTEN and downregulation of pAkt and tumor growth suppression were also mimicked by LC3 knockdown in MDA-MB-231 cells. Overall, these results suggest novel therapeutic actions by Man A through the induction of non-apoptotic and non-autophagic cytoplasmic vacuolation death by probably affecting ER stress, LC3 and p62 pathways in TNBC but not in normal mammary epithelial cells.  相似文献   

17.
Stress adaptation effect provides cell protection against ischemia induced apoptosis. Whether this mechanism prevents other types of cell death in stroke is not well studied. This is an important question for regenerative medicine to treat stroke since other types of cell death such as necrosis are also prominent in the stroke brain apart from apoptosis. We report here that treatment with 17-N-Allylamino-17-demethoxygeldanamycin (17AAG), an Hsp90 inhibitor, protected neural progenitor cells (NPCs) against oxygen glucose deprivation (OGD) induced cell death in a dose dependent fashion. Cell death assays indicated that 17AAG not only ameliorated apoptosis, but also necrosis mediated by OGD. This NPC protection was confirmed by exposing cells to oxidative stress, a major stress signal prevalent in the stroke brain. Mechanistic studies demonstrated that 17AAG activated PI3K/Akt and MAPK cell protective pathways. More interestingly, these two pathways were activated in vivo by 17AAG and 17AAG treatment reduced infarct volume in a middle cerebral artery occlusion (MCAO) stroke model. These data suggest that 17AAG protects cells against major cell death pathways and thus might be used as a pharmacological conditioning agent for regenerative medicine for stroke.  相似文献   

18.
Intermittent hypoxia (IH) is a hallmark feature in obstructive sleep apnea (OSA) which is increasingly recognized as an independent risk factor for atherosclerosis. Oxidative stress, inflammation, and cell apoptosis are major pathological events initiating or accelerating atherogenesis. This study addressed whether IH would affect these proatherogenic factors in endothelial cells and the mechanistic pathways involved. EA.hy926 cells were exposed to intermittent normoxia or IH for different numbers of cycles (32, 64, or 96). IH exposure time-dependently raised cellular GSSG/GSH ratio, increased production of IL-6 and IL-8, and accelerated cell apoptosis and death, concurrent with activation of NF-κB and inhibition of Nrf2/HO-1 pathways. At 64 cycles, inhibition of NF-κB attenuated IH-induced cellular oxidative stress and accumulation of inflammatory cytokines in cell culture medium but aggravated IH-induced cell apoptosis, while stimulation of HO-1 suppressed IH-induced cellular oxidative stress and cell apoptosis without affecting accumulation of inflammatory cytokines in cell culture medium. We demonstrated that early stage of exposure to IH-induced oxidative and inflammatory stresses leading to acceleration of cell apoptosis via NF-κB and Nrf2/HO-1 pathways in endothelial cells, suggesting the potential mechanisms for IH-induced vascular pathogenesis, in resemblance to OSA.  相似文献   

19.
20.
Oxidative stress inhibits apoptosis in human lymphoma cells.   总被引:1,自引:0,他引:1  
Apoptosis and necrosis are two forms of cell death that are induced under different conditions and that differ in morphological and biochemical features. In this report, we show that, in the presence of oxidative stress, human B lymphoma cells are unable to undergo apoptosis and die instead by a form of necrosis. This was established using the chemotherapy drug VP-16 or the calcium ionophore A23187 to induce apoptosis in Burkitt's lymphoma cell lines and by measuring classical markers of apoptotic death, including cell morphology, annexin V binding, DNA ladder formation, and caspase activation. In the presence of relatively low levels of H2O2 (75-100 microM), VP-16 and A23187 were unable to induce apoptosis in these cells. Instead, the cells underwent non-apoptotic cell death with mild cytoplasmic swelling and nuclear shrinkage, similar to the death observed when they were treated with H2O2 alone. We found that H2O2 inhibits apoptosis by depleting the cells of ATP. The effects of H2O2 can be overcome by inhibitors of poly(ADP)-ribosylation, which also preserve cellular ATP levels, and can be mimicked by agents such as oligomycin, which inhibit ATP synthesis. The results show that oxidants can manipulate cell death pathways, diverting the cell away from apoptosis. The potential physiological ramifications of this finding will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号