首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The interaction of Brevetoxin 3 (Pbtx-3), a sodium channel activator, with the cardiac sodium channel was studied at the single channel level. It was found that Pbtx-3 (20 microM) shifted steady-state activation to negative potentials, without major effects on the time course of macroscopic activation or macroscopic currents decay, as calculated from averaged single-channel records. Single-channel open times were found to be prolonged. Under the influence of the toxin, sodium channel openings could be observed frequently even at maintained depolarisation. These openings occurred to at least nine different subconductance levels of the open state with smaller conductivities than the maximal one and differed in their open times. Current amplitudes of these open substates were found to cluster around certain amplitude values. Appearance of substates at maintained depolarisation was dependent on the transmembrane potential (Em): Substates with smaller conductivity appeared more frequently at lower Em values whereas at higher Em values substates with higher conductivity values dominated. Furthermore, it was demonstrated that appearance of substates did not result from incomplete recovery from inactivation. From these observations it was concluded that the open substates observed correspond to different conformational states of the channel's activation gates. Under physiological conditions, when the sodium channel opens directly from its closed state these 'incomplete'-open states of the cardiac sodium channel are obscured by fast gating transitions between the corresponding, electrically silent, preopen states. Thus, Pbtx-3 acts mainly via stabilisation of the channel's preopen and different open states. A classification of sodium channel modifiers, based on their interaction with different conformational states of the channel is suggested.  相似文献   

3.
The α subunit of the cardiac sodium channel (Na(v)1.5) is an essential protein in the initial depolarization phase of the cardiomyocyte action potential. Post-translational modifications such as phosphorylation are known to regulate Na(v)1.5 function. Here, we used a proteomic approach for the study of the post-translational modifications of Na(v)1.5 using tsA201 cells as a model system. We generated a stable cell line expressing Na(v)1.5, purified the sodium channel, and analyzed Na(v)1.5 by MALDI-TOF and LC-MS/MS. We report the identification of arginine methylation as a novel post-translational modification of Na(v)1.5. R513, R526, and R680, located in the linker between domains I and II in Na(v)1.5, were found in mono- or dimethylated states. The functional relevance of arginine methylation in Na(v)1.5 is underscored by the fact that R526H and R680H are known Na(v)1.5 mutations causing Brugada and long QT type 3 syndromes, respectively. Our work describes for the first time arginine methylation in the voltage-gated ion channel superfamily.  相似文献   

4.
BackgroundVoltage-gated sodium channels Nav1.x mediate the rising phase of action potential in excitable cells. Variations in gene SCN5A, which encodes the hNav1.5 channel, are associated with arrhythmias and other heart diseases. About 1,400 SCN5A variants are listed in public databases, but for more than 30% of these the clinical significance is unknown and can currently only be derived by bioinformatics approaches.Methods and resultsWe used the ClinVar, SwissVar, Humsavar, gnomAD, and Ensembl databases to assemble a dataset of 1392 hNav1.5 variants (370 pathogenic variants, 602 benign variants and 420 variants of uncertain significance) as well as a dataset of 1766 damaging variants in 20 human sodium and calcium channel paralogs. Twelve in silico tools were tested for their ability to predict damaging mutations in hNav1.5. The best performing tool, MutPred, correctly predicted 93% of damaging variants in our hNav1.5 dataset. Among the 86 hNav1.5 variants for which electrophysiological data are also available, MutPred correctly predicted 82% of damaging variants. In the subset of 420 uncharacterized hNav1.5 variants MutPred predicted 196 new pathogenic variants. Among these, 74 variants are also annotated as damaging in at least one hNav1.5 paralog.ConclusionsUsing a combination of sequence-based bioinformatics techniques and paralogous annotation we have substantially expanded the knowledge on disease variants in the cardiac sodium channel and assigned a pathogenic status to a number of mutations that so far have been described as variants of uncertain significance. A list of reclassified hNav1.5 variants and their properties is provided.  相似文献   

5.
Shortly after cardiac Na+ channels activate and initiate the action potential, inactivation ensues within milliseconds, attenuating the peak Na+ current, INa, and allowing the cell membrane to repolarize. A very limited number of Na+ channels that do not inactivate carry a persistent INa, or late INa. While late INa is only a small fraction of peak magnitude, it significantly prolongs ventricular action potential duration, which predisposes patients to arrhythmia. Here, we review our current understanding of inactivation mechanisms, their regulation, and how they have been modeled computationally. Based on this body of work, we conclude that inactivation and its connection to late INa would be best modeled with a “feet-on-the-door” approach where multiple channel components participate in determining inactivation and late INa. This model reflects experimental findings showing that perturbation of many channel locations can destabilize inactivation and cause pathological late INa.  相似文献   

6.
Grieco TM  Malhotra JD  Chen C  Isom LL  Raman IM 《Neuron》2005,45(2):233-244
Voltage-gated sodium channels with "resurgent" kinetics are specialized for high-frequency firing. The alpha subunits interact with a blocking protein that binds open channels upon depolarization and unbinds upon repolarization, producing resurgent sodium current. By limiting classical inactivation, the cycle of block and unblock shortens refractory periods. To characterize the blocker in Purkinje neurons, we briefly exposed inside-out patches to substrate-specific proteases. Trypsin and chymotrypsin each removed resurgent current, consistent with established roles for positively charged and hydrophobic/aromatic groups in blocking sodium channels. In Purkinje cells, the only known sodium channel-associated subunit that has a cytoplasmic sequence with several positive charges and clustered hydrophobic/aromatic residues is beta4 (KKLITFILKKTREK; beta4(154-167)). After enzymatic removal of block, beta4(154-167) fully reconstituted resurgent current, whereas scrambled or point-mutated peptides were ineffective. In CA3 pyramidal neurons, which lack beta4 and endogenous block, beta4(154-167) generated resurgent current. Thus, beta4 may be the endogenous open-channel blocker responsible for resurgent kinetics.  相似文献   

7.
The pore domain of human voltage-dependent cardiac sodium channel Nav1.5 (hNav1.5) is the crucial binding targets for anti-arrhythmics drugs and some local anesthetic drugs but its three-dimensional structure is still lacking. This has affected the detailed studies of the binding features and mechanism of these drugs. In this paper, we present a structural model for open-state pore domain of hNav1.5 built using single template ROSETTA-membrane homology modeling with the crystal structure of NavMs. The assembled structural models are evaluated by rosettaMP energy and locations of binding sites. The modeled structures of the pore domain of hNav1.5 in open state will be helpful to explore molecular mechanism of a state-dependent drug binding and help designing new drugs.  相似文献   

8.
《Cell》2021,184(20):5151-5162.e11
  1. Download : Download high-res image (216KB)
  2. Download : Download full-size image
  相似文献   

9.
Xu L  Sun AJ  Ge JB 《生理科学进展》2010,41(1):72-74
心脏钠通道基因SCN5A突变可以导致多种心律失常,近年研究发现该基因突变与扩张型心肌病也有关,但致病机制不甚清楚。本文通过比较与扩张型心肌病有关的多个已发现SCN5A突变的电生理特点,提出该基因突变可能通过改变细胞内钠浓度来影响细胞内钙稳态而导致扩张型心肌病;新近发现的A1180V突变携带者表现出的异常心电图,很可能为某些扩张型心肌病患者进行早期诊断,提供一种有效而简便的方法。  相似文献   

10.
11.
The effects of sulfur dioxide (SO(2)) derivatives (bisulfite and sulfite, 1:3 M/M) on voltage-dependent sodium channel in isolated rat ventricular myocyte were studied using the whole cell patch-clamp technique. SO(2) derivatives increased sodium current (I(Na)) in a concentration-dependent manner. SO(2) derivatives at 10 microM significantly shifted steady-state inactivation curve of I(Na) to more positive potentials, but did not affect the activation curve. SO(2) derivatives markedly shifted the curve of time-dependent recovery of I(Na) from inactivation to the left, and accelerated the recovery of I(Na). SO(2) derivatives also significantly shortened the activation and inactivation time constants of I(Na). These results indicated that SO(2) derivatives produced concentration-dependent stimulation of cardiac sodium channels, which due mainly to the interaction of the drug with sodium channels in the inactivated state.  相似文献   

12.
Modifications of human cardiac sodium channel gating by UVA light   总被引:5,自引:0,他引:5  
Voltage-gated Na(+) channels are membrane proteins responsible for the generation of action potentials. In this report we demonstrate that UVA light elicits gating changes of human cardiac Na+ channels. First, UVA irradiation hampers the fast inactivation of cardiac Nav1.5 Na(+) channels expressed in HEK293t cells. A maintained current becomes conspicuous during depolarization and reaches its maximal quasi steady-state level within 5-7 min. Second, the activation time course is slowed by UVA light; modification of the activation gating by UVA irradiation continues for 20 min without reaching steady state. Third, along with the slowed activation time course, the peak current is reduced progressively. Most Na(+) currents are eliminated during 20 min of UVA irradiation. Fourth, UVA light increases the holding current nonlinearly; this phenomenon is slow at first but abruptly fast after 20 min. Other skeletal muscle Nav1.4 isoforms and native neuronal Na(+) channels in rat GH(3) cells are likewise sensitive to UVA irradiation. Interestingly, a reactive oxygen metabolite (hydrogen peroxide at 1.5%) and an oxidant (chloramine-T at 0.5 mM) affect Na(+) channel gating similarly, but not identically, to UVA. These results together suggest that UVA modification of Na(+) channel gating is likely mediated via multiple reactive oxygen metabolites. The potential link between oxidative stress and the impaired Na(+) channel gating may provide valuable clues for ischemia/reperfusion injury in heart and in CNS.  相似文献   

13.
14.
Studies aiming at the elucidation of the genetic basis of rare monogenic forms of hypertension have identified mutations in genes coding for the epithelial sodium channel ENaC, for the mineralocorticoid receptor, or for enzymes crucial for the synthesis of aldosterone. These genetic studies clearly demonstrate the importance of the regulation of Na+ absorption in the aldosterone-sensitive distal nephron (ASDN), for the maintenance of the extracellular fluid volume and blood pressure.Recent studies aiming at a better understanding of the cellular and molecular basis of ENaC-mediated Na+ absorption in the distal part of nephron, have essentially focused on the regulation ENaC activity and on the aldosterone-signaling cascade. ENaC is a constitutively open channel, and factors controlling the number of active channels at the cell surface are likely to have profound effects on Na+ absorption in the ASDN, and in the amount of Na+ that is excreted in the final urine.A number of membrane-bound proteases, kinases, have recently been identified that increase ENaC activity at the cell surface in heterologous expressions systems. Ubiquitylation is a general process that regulates the stability of a variety of target proteins that include ENaC. Recently, deubiquitylating enzymes have been shown to increase ENaC activity in heterologous expressions systems.These regulatory mechanisms are likely to be nephron specific, since in vivo studies indicate that the adaptation of the renal excretion of Na+ in response to Na+ diet occurs predominantly in the early part (the connecting tubule) of the ASDN.An important work is presently done to determine in vivo the physiological relevance of these cellular and molecular mechanisms in regulation of ENaC activity. The contribution of the protease-dependent ENaC regulation in mediating Na+ absorption in the ASDN is still not clearly understood. The signaling pathway that involves ubiquitylation of ENaC does not seem to be absolutely required for the aldosterone-mediated control of ENaC. These in vivo physiological studies presently constitute a major challenge for our understanding of the regulation of ENaC to maintain the Na+ balance.  相似文献   

15.
16.
Sodium channels initiate the electrical cascade responsible for cardiac rhythm, and certain life-threatening arrhythmias arise from Na(+) channel dysfunction. We propose a novel mechanism for modulation of Na(+) channel function whereby calcium ions bind directly to the human cardiac Na(+) channel (hH1) via an EF-hand motif in the C-terminal domain. A functional role for Ca(2+) binding was identified electrophysiologically, by measuring Ca(2+)-induced modulation of hH1. A small hH1 fragment containing the EF-hand motif was shown to form a structured domain and to bind Ca(2+) with affinity characteristic of calcium sensor proteins. Mutations in this domain reduce Ca(2+) affinity in vitro and the inactivation gating effects of Ca(2+) in electrophysiology experiments. These studies reveal the molecular basis for certain forms of long QT syndrome and other arrhythmia-producing syndromes, and suggest a potential pharmacological target for antiarrhythmic drug design.  相似文献   

17.
Open channel properties of canine cardiac Purkinje cell Na+ channels were studied with single channel cell-attached recording and with whole cell macroscopic current recording in internally perfused cells. Single channel currents and membrane currents increased with an increase in Na+ concentration, but showed evidence of saturation. Assuming first-order binding, the Km for Na+ was 370 mM. PCs/PNa was 0.020 and PK/PNa was 0.094. The current-voltage relationship for single channels showed prominent flattening in the hyperpolarizing direction. This flattening was accentuated by 10 mM Ca2+ and was greatly reduced in O mM Ca2+, indicating that the rectification was a consequence of Ca2+ block of the Na+ channels. A similar instantaneous current-voltage relationship was seen for the whole cell membrane currents. These results demonstrate that the cardiac channel shows substantial Ca2+ block, although it is relatively insensitive to tetrodotoxin. The Na+ and Ca2+ binding properties could be modeled by the four-barrier Eyring rate theory model, with similar values to those reported for the neuroblastoma Na+ channel (Yamamoto, D.,J.Z. Yeh, and T. Narahashi, 1984, Biophys J., 45:337-344).  相似文献   

18.
19.
We investigated the cellular and molecular mechanisms underlying arrhythmias in heart failure. A genetically engineered mouse lacking the expression of the muscle LIM protein (MLP-/-) was used in this study as a model of heart failure. We used electrocardiography and patch clamp techniques to examine the electrophysiological properties of MLP-/- hearts. We found that MLP-/- myocytes had smaller Na+ currents with altered voltage dependencies of activation and inactivation and slower rates of inactivation than control myocytes. These changes in Na+ currents contributed to longer action potentials and to a higher probability of early afterdepolarizations in MLP-/- than in control myocytes. Western blot analysis suggested that the smaller Na+ current in MLP-/- myocytes resulted from a reduction in Na+ channel protein. Interestingly, the blots also revealed that the alpha-subunit of the Na+ channel from the MLP-/- heart had a lower average molecular weight than in the control heart. Treating control myocytes with the sialidase neuraminidase mimicked the changes in voltage dependence and rate of inactivation of Na+ currents observed in MLP-/- myocytes. Neuraminidase had no effect on MLP-/- cells thus suggesting that Na+ channels in these cells were sialic acid-deficient. We conclude that deficient glycosylation of Na+ channel contributes to Na+ current-dependent arrhythmogenesis in heart failure.  相似文献   

20.
The two-microelectrode, voltage-clamp technique was applied to rabbit cardiac Purkinje fibers to study the interaction of tetrodotoxin (TTX) with the slowly inactivating Na current. Binding of TTX to rested, inactivated, and activated channels was estimated by measuring the relative decrease of current at the beginning (rested and inactivated channels) and the end (activated channels) of a 1 s depolarizing clamp to -45 mV. The accelerated decline of the Na current in the presence of a submaximal dose of TTX was interpreted as an increase in blocking efficiency upon depolarization. The experiments show that activated as well as inactivated channels are more sensitive to TTX than are rested channels. The dissociation equilibrium constants for the three states are 3.5 X 10(-6) M for the rested, 0.94 X 10(-6) M for the activated, and 0.75 X 10(-6) M for the inactivated channels. The time course of activation block was dependent on TTX concentration. Rate constants for association and dissociation of the activated state are 1.3 X 10(6) M-1 X s-1 and 1.5 s-1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号