首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Bhutia SK  Das SK  Azab B  Dash R  Su ZZ  Lee SG  Dent P  Curiel DT  Sarkar D  Fisher PB 《Autophagy》2011,7(9):1076-1077
MDA-7/IL-24 has noteworthy potential as an anticancer therapeutic because of its diversity of antitumor properties, its lack of toxicity toward normal cells and tissues, and its safety and efficacy as evidenced in a phase I clinical trial. In a recent study, we document that Ad.mda-7-induced ER stress and ceramide production leads to early autophagy that subsequently switches to apoptosis in human prostate cancer cells. During the apoptotic phase, the MDA-7/IL-24 protein physically interacts with Beclin 1 and this interaction might inhibit Beclin 1 function culminating in apoptosis. Conversely, Ad.mda-7 infection leads to calpain-mediated cleavage of the Atg5 protein that might also facilitate a biochemical switch from autophagy to apoptosis. Our recent paper reveals novel aspects of the interplay between autophagy and apoptosis that underlie the cytotoxic action of MDA-7/IL-24 in prostate cancer cells. These new insights into MDA-7/IL-24 action provide intriguing leads for developing innovative combinatorial approaches for prostate cancer therapy.  相似文献   

2.
BACKGROUND: The mda-7 gene (melanoma differentiation associated gene-7) is a novel tumor suppressor gene. The anti-proliferative activity of MDA-7 has been previously reported. In this report, we analyze the anti-tumor efficacy of Ad-mda7 in a broad spectrum of cancer lines. MATERIALS AND METHODS: Ad-mda7-transduced cancer or normal cell lines were assayed for cell proliferation (tritiated thymidine incorporation assay, Alamar blue assay, and trypan-blue exclusion assay), apoptosis (TUNEL, and Annexin V staining visualized by fluorescent microscopy or FACs analysis), and cell cycle regulation (Propidium Iodide staining and FACs analysis). RESULTS: Ad-mda7 treatment of tumor cells resulted in growth inhibition and apoptosis in a temporal and dose-dependent manner. The anti-tumor effects were independent of the genomic status of p53, RB, p16, ras, bax, and caspase 3 in these cells. In addition, normal cell lines did not show inhibition of proliferation or apoptotic response to Ad-mda7. Moreover, Ad-mda7-transduced cancer cells secreted a soluble form of MDA-7 protein. Thus, Ad-mda7 may represent a novel gene-therapeutic agent for the treatment of a variety of cancers. CONCLUSIONS: The potent and selective killing activity of Ad-mda7 in cancer cells but not in normal cells makes this vector a potential candidate for cancer gene therapy.  相似文献   

3.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a unique member of the IL-10 gene family, displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis, and modulation of anti-tumor immune responses. Here, we identify clusterin (CLU) as a MDA-7/IL-24 interacting protein in DU-145 cells and investigate the role of MDA-7/IL-24 in regulating CLU expression and mediating the antitumor properties of mda-7/IL-24 in prostate cancer. Ad.mda-7 decreased expression of soluble CLU (sCLU) and increased expression of nuclear CLU (nCLU). In the initial phase of Ad.mda-7 infection sCLU expression increased and CLU interacted with MDA-7/IL-24 producing a cytoprotective effect. Infection of stable clones of DU-145 prostate cancer cells expressing sCLU with Ad.mda-7 resulted in generation of nCLU that correlated with decreased cell viability and increased apoptosis. In the presence of mda-7/IL-24, sCLU-DU-145 cells displayed G(2)/M phase arrest followed by apoptosis. Similarly, Ad.mda-7 infection decreased cell migration by altering cytoskeleton in sCLU-DU-145 cells. Ad.mda-7-treated sCLU-DU-145 cells displayed a significant reduction in tumor growth in mouse xenograft models and reduced angiogenesis when compared to the vector control group. Tumor tissue lysates demonstrated enhanced nCLU generated from sCLU with increased apoptosis in the presence of MDA-7/IL-24. Our findings reveal novel aspects relative to the role of sCLU/nCLU in regulating the anticancer properties of MDA-7/IL-24 that may be exploited for developing enhanced therapies for prostate cancer.  相似文献   

4.
Ovarian cancer is the fifth most common cause of cancer-related death in women. Current interventional approaches, including debulking surgery, chemotherapy, and/or radiation have proven minimally effective in preventing the recurrence and/or mortality associated with this malignancy. Subtraction hybridization applied to terminally differentiating human melanoma cells identified melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), whose unique properties include the ability to selectively induce growth suppression, apoptosis, and radiosensitization in diverse cancer cells, without causing any harmful effects in normal cells. Previously, it has been shown that adenovirus-mediated mda-7/IL-24 therapy (Ad.mda-7) induces apoptosis in ovarian cancer cells, however, the apoptosis induction was relatively low. We now document that apoptosis can be enhanced by treating ovarian cancer cells with ionizing radiation (IR) in combination with Ad.mda-7. Additionally, we demonstrate that mda-7/IL-24 gene delivery, under the control of a minimal promoter region of progression elevated gene-3 (PEG-3), which functions selectively in diverse cancer cells with minimal activity in normal cells, displays a selective radiosensitization effect in ovarian cancer cells. The present studies support the use of IR in combination with mda-7/IL-24 as a means of augmenting the therapeutic benefit of this gene in ovarian cancer, particularly in the context of tumors displaying resistance to radiation therapy.  相似文献   

5.
mda-7 (IL-24): signaling and functional roles   总被引:1,自引:0,他引:1  
One hallmark of neoplasia is abnormal differentiation. Induction of differentiation, by chemical or biological methods, provides a possible therapeutic intervention. "Differentiation therapy" is well documented in several model systems. These include melanoma, in which treatment with interferon-beta and the protein kinase C activator mezerein induces irreversible growth arrest and terminal differentiation culminating in programmed cell death. Subtraction hybridization between terminally differentiated and untreated melanoma cells identified melanoma differentiation-associated gene-7 (mda-7), which is selectively induced during the process of melanoma terminal differentiation. Since its identification seven years ago, mda-7 has been the object of intense focus because of its unique biological properties. Firstly, mda-7 is a secreted protein having cytokine-like properties and belonging to the IL-10 cytokine family. Based on this consideration, mda-7 was renamed IL-24. Secondly if delivered by means of an adenoviral vector, mda-7 induces selective apoptosis in cancer cells of diverse origin, while sparing their normal cellular counterparts. As such, mda-7 has become a novel tool for cancer gene therapy and is currently undergoing phase II clinical trials to determine its clinical efficacy in patients. The present review examines the biological properties of mda-7 and the signaling pathways that contribute to its unique cancer-specific apoptosis-inducing properties.  相似文献   

6.
Interleukin-24 (mda-7/IL-24) is a cytokine in the IL-10 family that has received a great deal of attention for its properties as a tumor suppressor and as a potential treatment for cancer. In this study, we have identified and characterized five alternatively spliced isoforms of this gene. Several, but not all of these isoforms induce apoptosis in the osteosarcoma cell line U2OS, while none affect the survival of the non-cancerous NOK cell line. One of these isoforms, lacking three exons and encoding the N-terminal end of the mda-7/IL-24 protein sequence, caused levels of apoptosis that were higher than those caused by the full-length mda-7/IL-24 variant. Additionally, we found that the ratio of isoform expression can be modified by the splice factor SRp55. This regulation suggests that alternative splicing of mda-7/IL-24 is under tight control in the cell, and can be modified under various cellular conditions, such as DNA damage. In addition to providing new insights into the function of an important tumor suppressor gene, these findings may also point toward new avenues for cancer treatment.  相似文献   

7.
Melanoma differentiation-associated gene-7 (mda-7), also referred to as IL-24, is a novel growth regulatory cytokine that has been shown to regulate the immune system by inducing the expression of inflammatory cytokines, such as TNF, IL-1, and IL-6. Whether the induction of these cytokines by MDA-7 is mediated through activation of NF-kappaB or whether it regulates cytokine signaling is not known. In the present report we investigated the effect of MDA-7 on NF-kappaB activation and on TNF-induced NF-kappaB activation and apoptosis in human embryonic kidney 293 cells. Stable or transient transfection with mda-7 into 293 cells failed to activate NF-kappaB. However, TNF-induced NF-kappaB activation was significantly enhanced in mda-7-transfected cells, as indicated by DNA binding, p65 translocation, and NF-kappaB-dependent reporter gene expression. Mda-7 transfection also potentiated NF-kappaB reporter activation induced by TNF receptor-associated death domain and TNF receptor-associated factor-2. Cytoplasmic MDA-7 with deleted signal sequence was as effective as full-length MDA-7 in potentiating TNF-induced NF-kappaB reporter activity. Secretion of MDA-7 was not required for the potentiation of TNF-induced NF-kappaB activation. TNF-induced expression of the NF-kappaB-regulated gene products cyclin D1 and cyclooxygenase-2, were significantly up-regulated by stable expression of MDA-7. Furthermore, MDA-7 expression abolished TNF-induced apoptosis, and suppression of NF-kappaB by IkappaBalpha kinase inhibitors enhanced apoptosis. Overall, our results indicate that stable or transient MDA-7 expression alone does not substantially activate NF-kappaB, but potentiates TNF-induced NF-kappaB activation and NF-kappaB-regulated gene expression. Potentiation of NF-kappaB survival signaling by MDA-7 inhibits TNF-mediated apoptosis.  相似文献   

8.
The melanoma differentiation-associated gene-7 (mda-7/IL-24) is a unique member of the interleukin 10 (IL-10) family of cytokines, with ubiquitous tumor cell pro-apoptotic activity. Recent data have shown that IL-24 is secreted as a glycosylated protein and functions as a pro-Th1 cytokine and as a potent anti-angiogenic molecule. In this study, we analyzed the activity of Ad-mda7 and its protein product, secreted IL-24, against human breast cancer cells. We show that Ad-mda7 transduction of human breast cancer cells results in G2/M phase cell cycle arrest and apoptotic cell death, which correlates with secretion of IL-24 protein. Neutralizing antibody against IL-24 significantly inhibited Ad-mda7 cytotoxicity. IL-24 and IL-10 both engage their cognate receptors on breast cancer cells resulting in phosphorylation and activation of STAT3, however, IL-10 receptor binding failed to induce cell killing, indicating that tumor cell killing by IL-24 is independent of STAT3 phosphorylation. Treatment with exogenous IL-24 induced apoptosis in breast cancer cells and this effect was abolished by addition of anti-IL-24 antibody or anti-IL-20R1, indicating that bystander cell killing is mediated via IL-24 binding to the IL-20R1/IL-20R2 heterodimeric receptor complex. Co-administration of the related cytokine IL-10 inhibited killing mediated by IL-24 and concomitantly inhibited IL-24 mediated up-regulation of the tumor suppressor proteins, p53 and p27Kip1. In summary, we have defined a tumor-selective cytotoxic bystander role for secreted IL-24 protein and identified a novel receptor-mediated death pathway in breast cancer cells, wherein the related cytokines IL-24 and IL-10 exhibit antagonistic activity.  相似文献   

9.
MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine   总被引:23,自引:0,他引:23  
The melanoma differentiation-associated gene-7 (mda-7) was cloned by subtraction hybridization as a molecule whose expression is elevated in terminally differentiated human melanoma cells. Current information based on structural and sequence homology, has led to the recognition of MDA-7 as an IL-10 family cytokine member and its renaming as IL-24. Northern blot analysis revealed mda-7/IL-24 expression in human tissues associated with the immune system such as spleen, thymus, peripheral blood leukocytes and normal melanocytes. The MDA-7/IL-24 mouse counterpart, FISP, appears to be a Th2-specific protein and the rat counterpart, C49A/MOB-5, is associated with wound healing and is also induced as a consequence of ras-transformation. A notable property of MDA-7/IL-24 is its ability to induce apoptosis in a large spectrum of human cancer derived cell lines, in mouse xenografts and upon intratumoral injection in human tumors (phase I clinical trials). Various aspects of this intriguing molecule including its cytokine and anti-tumoral effects are described and discussed.  相似文献   

10.
11.
Tian H  Wang J  Zhang B  Di J  Chen F  Li H  Li L  Pei D  Zheng J 《PloS one》2012,7(5):e37200
MDA-7/IL-24 was involved in the specific cancer apoptosis through suppression of Bcl-2 expression, which is a key apoptosis regulatory protein of the mitochondrial death pathway. However, the underlying mechanisms of this regulation are unclear. We report here that tumor-selective replicating adenovirus ZD55-IL-24 leads to Bcl-2 S-denitrosylation and concomitant ubiquitination, which take part in the 26S proteasome degradation. IL-24-siRNA completely blocks Bcl-2 ubiquitination via reversion of Bcl-2 S-denitrosylation and protects it from proteasomal degradation which confirmed the significant role of MDA-7/IL-24 in regulating posttranslational modification of Bcl-2 in cancer cells. Nitric oxide (NO) is a key regulator of protein S-nitrosylation and denitrosylation. The NO donor, sodium nitroprusside (SNP), down-regulates Bcl-2 S-denitrosylation, attenuates Bcl-2 ubiquitination and subsequently counteracts MDA-7/IL-24 induced cancer cell apoptosis, whereas NO inhibitor 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (PTIO) shows the opposite effect. At the same time, these NO modulators fail to affect Bcl-2 phosphorylation, suggesting that NO regulates Bcl-2 stability in a phosphorylation-independent manner. In addition, Bcl-2 S-nitrosylation reduction induced by ZD55-IL-24 was attributed to both iNOS decrease and TrxR1 increase. iNOS-siRNA facilitates Bcl-2 S-denitrosylation and ubiquitin-degradation, whereas the TrxR1 inhibitor auranofin prevents Bcl-2 from denitrosylation and ubiquitination, thus restrains the caspase signal pathway activation and subsequent cancer cell apoptosis. Taken together, our studies reveal that MDA-7/IL-24 induces Bcl-2 S-denitrosylation via regulation of iNOS and TrxR1. Moreover, denitrosylation of Bcl-2 results in its ubiquitination and subsequent caspase protease family activation, as a consequence, apoptosis susceptibility. These findings provide a novel insight into MDA-7/IL-24 induced growth inhibition and carcinoma apoptosis.  相似文献   

12.
Prostate cancer is the second most common cause of death related to cancer in Western society. 2-Methoxyestradiol (2-ME), an endogenous metabolite of estradiol-17beta, inhibits tumor angiogenesis while also exerting potent cytotoxic effects on various cancer cells. 2-ME has been shown to activate the p38 MAPK and JNK pathways and to induce apoptosis in cells, although the underlying molecular mechanisms for this are unknown. Here we report that the expression of Smad7, an adaptor molecule required to activate p38 MAPK in the transforming growth factor beta signaling pathway, is also required for 2-ME-induced p38 activation and apoptosis in human prostate cancer cells (PC-3U). PC-3U/AS-S7 cells stably transfected with an antisense Smad7 construct, or PC-3U cells transiently transfected with short interfering RNA for Smad7, were protected against 2-ME-induced apoptosis. 2-ME-induced apoptosis was found to involve p38 MAPK and JNK, because simultaneous treatments with 2-ME and a specific p38 inhibitor (SB203580) or an inhibitor of JNK (L-JNK1) prevented 2-ME-induced apoptosis. Most interestingly, Smad7 was shown by both antisense and short interfering RNA techniques to affect levels of beta-catenin, which has been implicated previously in the regulation of apoptosis. Moreover, Smad7 was found to be important for the basal expression of Bim, a pro-apoptotic Bcl-2 family member, and for 2-ME-induced expression of Bim. These results suggest that expression of Smad7 is crucial for 2-ME-induced apoptosis in human prostate cancer cells.  相似文献   

13.
Experimental evidence documents that the MDA-7/IL-24 protein (an IL-10 family cytokine) binds to IL-20 and IL-22 receptor complexes resulting in the activation of JAK/STAT signaling pathways. Recent published reports utilizing human blood derived primary lymphocytes have provided additional confirmatory evidence relating to the cytokine properties of this molecule. A notable attribute of mda-7/IL-24 is its cancer cell-specific apoptosis inducing capacity, which currently remains incompletely understood. Treatment with distinctive tyrosine kinase inhibitors (Genistein and AG18) or a JAK-selective inhibitor (AG490) did not prevent Ad.mda-7 induced apoptosis in diverse cell lines. In addition, there is no apparent correlation between patterns of expression of IL-20R1, IL-20R2, and IL-22R mRNA and susceptibility to Ad.mda-7 in different cell lines. Furthermore, Ad.mda-7 is able to induce killing in STAT/JAK deficient cells. In contrast, treatment with the p38(MAPK) selective inhibitor SB203580, partially inhibited apoptosis induced by Ad.mda-7 in different cell lines. These results demonstrate for the first time that signaling events leading to susceptibility to Ad.mda-7 induced apoptosis, might be tyrosine kinase independent and can thus be distinguished from its cytokine function related properties mediated by the IL-20/IL-22 receptor complexes that require JAK/STAT kinase activity.  相似文献   

14.
Adenovirus (Ad)-based gene therapy represents a potentially viable strategy for treating colorectal cancer. The infectivity of serotype 5 adenovirus (Ad.5), routinely used as a transgene delivery vector, is dependent on Coxsackie-adenovirus receptors (CAR). CAR expression is downregulated in many cancers thus preventing optimum therapeutic efficiency of Ad.5-based therapies. To overcome the low CAR problem, a serotype chimerism approach was used to generate a recombinant Ad (Ad.5/3) that is capable of infecting cancer cells via Ad.3 receptors in a CAR-independent manner. We evaluated the improved transgene delivery and efficacy of Ad.5/3 recombinant virus expressing melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), an effective wide-spectrum cancer-selective therapeutic. In low CAR human colorectal cancer cells RKO, wild-type Ad.5 virus expressing mda-7/IL-24 (Ad.5-mda-7) failed to infect efficiently resulting in lack of expression of MDA-7/IL-24 or induction of apoptosis. However, a recombinant Ad.5/3 virus expressing mda-7/IL-24 (Ad.5/3-mda-7) efficiently infected RKO cells resulting in higher MDA-7/IL-24 expression and inhibition of cell growth both in vitro and in nude mice xenograft models. Addition of the novel Bcl-2 family pharmacological inhibitor Apogossypol derivative BI-97C1 (Sabutoclax) significantly augmented the efficacy of Ad.5/3-mda-7. A combination regimen of suboptimal doses of Ad.5/3-mda-7 and BI-97C1 profoundly enhanced cytotoxicity in RKO cells both in vitro and in vivo. Considering the fact that Ad.5-mda-7 has demonstrated significant objective responses in a Phase I clinical trial for advanced solid tumors, Ad.5/3-mda-7 alone or in combination with BI-97C1 would be predicted to exert significantly improved therapeutic efficacy in colorectal cancer patients.  相似文献   

15.

Introduction  

Melanoma differentiation associated gene-7 (MDA-7), also known as interleukin (IL)-24, is a tumour suppressor gene associated with differentiation, growth and apoptosis. However, the mechanisms underlying its anti-neoplastic activity, tumour-specificity and efficacy across a spectrum of human cancers have yet to be fully elucidated. In this study, the biological impact of MDA-7 on the behavior of breast cancer (BC) cells is evaluated. Furthermore, mRNA expression of MDA-7 is assessed in a cohort of women with BC and correlated with established pathological parameters and clinical outcome.  相似文献   

16.
Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation.  相似文献   

17.
Interleukin-24 (IL-24) is a novel cytokine selectively inhibiting proliferation of cancer cells but with little effect on normal cells. However, IL-24 is difficult to express in Escherichia coli. In this study, we optimised the secondary structure of the translation initiation region using computational approach to obtain non-fusion recombinant IL-24 (nrIL-24). The Gibbs free energy of the region was decreased from ?22 to ?9.07 kcal mol?1, potentially promoting a loose secondary structure formation and improving the translation initiation efficiency. As a result, the expression of nrIL-24 was increased to 26 % of the total cellular protein from being barely initially detectable. nrIL-24 showed a concentration-dependent inhibition of A375 cells but had little effect on normal human cells. These results demonstrate that this method in increasing nrIL-24 expression is effective and efficient.  相似文献   

18.
Although much progress has been made in the treatment of gliomas, the prognosis for patients with gliomas is still very poor. Stem cell-based therapies may be promising options for glioma treatment. Recently, many studies have reported that umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) are ideal gene vehicles for tumor gene therapy. Interleukin 24 (IL-24) is a pleiotropic immunoregulatory cytokine that has an apoptotic effect on many kinds of tumor cells and can inhibit the growth of tumors specifically without damaging normal cells. In this study, we investigated UC-MSCs as a vehicle for the targeted delivery of IL-24 to tumor sites. UC-MSCs were transduced with lentiviral vectors carrying green fluorescent protein (GFP) or IL-24 complementary DNA. The results indicated that UC-MSCs could selectively migrate to glioma cells in vitro and in vivo. Injection of IL-24-UC-MSCs significantly suppressed tumor growth of glioma xenografts. The restrictive efficacy of IL-24-UC-MSCs was associated with the inhibition of proliferation as well as the induction of apoptosis in tumor cells. These findings indicate that UC-MSC-based IL-24 gene therapy may be able to suppress the growth of glioma xenografts, thereby suggesting possible future therapeutic use in the treatment of gliomas.  相似文献   

19.
The CD7(-) subset of CD4(+) T cells reflects a stable differentiation state of post-thymic helper T cells with CD45R0(+)CD45RA(-) 'memory' phenotype. Here we report that CD4(+)CD7(-) T cells are prone to increased spontaneous apoptosis in vitro compared to CD4(+)CD7(+) T cells. Spontaneous apoptosis is prevented by IL-15, but not by IL-2. Moreover, IL-15 increases Bcl-2 and decreases CD95/Fas expression of CD7(-), but not of CD7(+) T cells. Because IL-15 is physiologically not secreted but expressed in a membrane-bound form, we cocultured T cells with TNF-alpha stimulated fibroblasts that expose membrane IL-15. TNF-alpha stimulated fibroblasts rescue CD4(+)CD7(-) T cells from apoptosis whereas unstimulated fibroblasts do not. Rescue from apoptosis requires cell-cell contact and is abolished by addition of neutralizing antibodies to IL-15. We conclude that membrane IL-15 prevents accelerated apoptosis of CD4(+)CD7(-) T cells. This mechanism may contribute to accumulation of CD7(-) T cells in chronic inflammatory skin lesions.  相似文献   

20.
Zinc concentrations in the prostate are uniquely high but are dramatically decreased with prostate cancer. Studies have suggested that increasing zinc in the prostate may be a potential therapeutic strategy. The goal of this study was to evaluate the antiproliferative effects of zinc in prostate cancer cells (PC-3) and noncancerous benign prostate hyperplasia (BPH) cells (BPH-1) and to define possible mechanisms. PC-3 and BPH-1 cells were treated with zinc (0–250 μM) for 24 and 48 h, and cell growth and viability were examined. Apoptosis was assessed by phosphatidylserine externalization, caspase activation and protein expression of B-cell CLL/lymphoma 2 (Bcl-2)-associated X protein (BAX):Bcl-2. BPH-1 cells were more sensitive to the antiproliferative effects of zinc compared to PC-3. The response to zinc in PC-3 and BPH-1 cells differed as evidenced by opposing effects on Bcl-2:BAX expression. Additionally, different effects on the nuclear expression and activity of the p65 subunit of nuclear factor kappa B were observed in response to zinc between the two cell types. The differential response to zinc in PC-3 and BPH-1 cells suggests that zinc may serve an important role in regulating cell growth and apoptosis in prostate cancer and hyperplasia cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号