共查询到20条相似文献,搜索用时 11 毫秒
1.
Matrix metalloproteases (MMPs) are key regulatory molecules in the formation, remodeling and degradation of extracellular matrix (ECM) components in both physiological and pathological processes in many tissues. In skeletal muscle, MMPs play an important role in the homeostasis and maintenance of myofiber functional integrity by breaking down ECM and regulating skeletal muscle cell migration, differentiation and regeneration. Skeletal muscle satellite cells, a group of quiescent stem cells located between the basement membrane and the plasmalemma of myofibers, are responsible for lifelong maintenance and repairing, which can be activated and as a result migrate underneath the basement membrane to promote regeneration at the injured site. MMPs are able to degrade ECM components, thereby facilitating satellite cell migration and differentiation. This current review will focus on the critical roles of MMPs in skeletal muscle injury and repair, which include satellite cell activation with migration and differentiation. The effect of MMPs on muscle regeneration and fibrous scar tissue formation, as well as therapeutic insights for the future will be explored.Key words: matrix metalloproteinases, skeletal muscle satellite cells, migration, differentiation, regeneration, fibrosis 相似文献
2.
3.
In response to injury, epithelial cells migrate across the denuded tissue to rapidly close the wound and restore barrier, thereby preventing the entry of pathogens and leakage of fluids. Efficient, proper migration requires a range of processes, acting both inside and out of the cell. Among the extracellular responses is the expression of various matrix metalloproteinases (MMPs). Though long thought to ease cell migration simply by breaking down matrix barriers, findings from various models demonstrate that MMPs facilitate (and sometimes repress) cell movement by other means, such as affecting the state of cell–matrix interactions or proliferation. In this Prospect, we review some key data indicting how specific MMPs function via their activity as proteinases to control closure of epithelial wounds. J. Cell. Biochem. 108: 1233–1243, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
4.
Role of matrix metalloproteinases in melanoma cell invasion 总被引:11,自引:0,他引:11
Cutaneous melanomas are notorious for their tendency to metastasize. Essential steps in this process are the degradation of basement membranes and remodeling of the extracellular matrix (ECM) by proteolytic enzymes such as matrix metalloproteinases (MMPs), which are regulated by their tissue inhibitors (TIMPs). An MMP expression is not restricted to tumor cells but is also found in stromal cells, indicating that stroma-derived proteases may contribute to melanoma progression. The MMPs have been shown to interact with a broad range of non-matrix proteins including adhesion molecules, growth factors and mediators of angiogenesis and apoptosis. In this review, we evaluate new insights into the interplay of MMPs and their molecular partners in melanoma progression. 相似文献
5.
Role of matrix metalloproteinases in inflammatory bowel disease 总被引:6,自引:0,他引:6
Recent evidence demonstrates that the increased expression and activity of matrix metalloproteinases (MMPs) may contribute to intestinal tissue injury and inflammation in inflammatory bowel disease, and that MMP inhibition might be a new therapeutic approach to controlling inflammatory response. In addition, MMPs may play a crucial role in physiological and pathophysiological reactions such as leukocyte accumulation into inflamed tissue, cytokine production from inflammatory and epithelial cells, T lymphocyte homing to the intestine, wound healing and proliferation of epithelial cells, and intestinal innate immunity. This review focuses on recent progress in elucidating the biological and pathological roles of MMPs in inflammatory bowel disease. 相似文献
6.
Chiara Sassoli Daniele Nosi Alessia Tani Flaminia Chellini Benedetta Mazzanti Franco Quercioli Sandra Zecchi-Orlandini Lucia Formigli 《Experimental cell research》2014
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7+ satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. 相似文献
7.
Khasigov PZ Ktzoeva SA Gatagonova TM Tareeva IE Grachev SV Berezov TT 《Biochemistry. Biokhimii?a》2000,65(5):519-524
This review considers molecular mechanisms that underlie disorders in the structure and metabolism of renal extracellular matrix in diabetic nephropathy. The contribution of the increased synthesis of renal extracellular matrix proteins in the accumulation of renal mesangial matrix is considered, and the important role of the degradation system of the extracellular matrix proteins in the development of fibrosis is also shown. Data on changes in mRNA expression for the matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in various forms of diabetic nephropathy are presented. A correlation is established between changes in the balance of MMP proteolytic activity and TIMP activity and the accumulation of extracellular matrix. 相似文献
8.
Stephen M Krane 《Arthritis research & therapy》2002,5(1):2-3
Irreversible destruction of joint structures is a major feature of osteoarthritis and rheumatoid arthritis. Fibrillar collagens in bone, cartilage and other soft tissues are critical for optimal joint form and function. Several approaches can be used to ascertain the role of collagenases, matrix metalloproteinases, in proteolysis of joint collagens in arthritis. These approaches include identifying spontaneous genetic disorders of the enzymes and substrates in humans and animals, as well as engineering mutations in the genes that encode these proteins in mice. Insights gained from such studies can be used to design new therapies to interrupt these catabolic events. 相似文献
9.
10.
Krane SM 《Arthritis research & therapy》2003,5(1):2-4
Irreversible destruction of joint structures is a major feature of osteoarthritis and rheumatoid arthritis. Fibrillar collagens in bone, cartilage and other soft tissues are critical for optimal joint form and function. Several approaches can be used to ascertain the role of collagenases, matrix metalloproteinases, in proteolysis of joint collagens in arthritis. These approaches include identifying spontaneous genetic disorders of the enzymes and substrates in humans and animals, as well as engineering mutations in the genes that encode these proteins in mice. Insights gained from such studies can be used to design new therapies to interrupt these catabolic events. 相似文献
11.
Matrix metalloproteinases (MMPs) are zinc-endopeptidases with multifactorial actions in central nervous system (CNS) physiology and pathology. Accumulating data suggest that MMPs have a deleterious role in stroke. By degrading neurovascular matrix, MMPs promote injury of the blood-brain barrier, edema and hemorrhage. By disrupting cell-matrix signaling and homeostasis, MMPs trigger brain cell death. Hence, there is a movement toward the development of MMP inhibitors for acute stroke therapy. But MMPs may have a different role during delayed phases after stroke. Because MMPs modulate brain matrix, they may mediate beneficial plasticity and remodeling during stroke recovery. Here, we show that MMPs participate in delayed cortical responses after focal cerebral ischemia in rats. MMP-9 is upregulated in peri-infarct cortex at 7-14 days after stroke and is colocalized with markers of neurovascular remodeling. Treatment with MMP inhibitors at 7 days after stroke suppresses neurovascular remodeling, increases ischemic brain injury and impairs functional recovery at 14 days. MMP processing of bioavailable VEGF may be involved because inhibition of MMPs reduces endogenous VEGF signals, whereas additional treatment with exogenous VEGF prevents MMP inhibitor-induced worsening of infarction. These data suggest that, contrary to MMP inhibitor therapies for acute stroke, strategies that modulate MMPs may be needed for promoting stroke recovery. 相似文献
12.
Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs. 相似文献
13.
The biological functions of matrix metalloproteinases (MMPs) extend beyond extracellular matrix degradation. Non-proteolytic activities of MMPs are just beginning to be understood. Herein, we evaluated the role of proMMPs in cell migration. Employing a Transwell chamber migration assay, we demonstrated that transfection of COS-1 cells with various proMMP cDNAs resulted in enhancement of cell migration. Latent MMP-2 and MMP-9 enhanced cell migration to a greater extent than latent MMP-1, -3, -11 and -28. To examine if proteolytic activity is required for MMP-enhanced cell migration, three experimental approaches, including fluorogenic substrate degradation assay, transfection of cells with catalytically inactive mutant MMP cDNAs, and addition of hydroxamic acid-derived MMP inhibitors, were employed. We demonstrated that the proteolytic activities of MMPs are not required for MMP-induced cell migration. To explore the mechanism underlying MMP-enhanced cell migration, structure-function relationship of MMP-9 on cell migration was evaluated. By using a domain swapping approach, we demonstrated that the hemopexin domain of proMMP-9 plays an important role in cell migration when examined by a transwell chamber assay and by a phagokinetic migration assay. TIMP-1, which interacts with the hemopexin domain of proMMP-9, inhibited cell migration, whereas TIMP-2 had no effect. Employing small molecular inhibitors, MAPK and PI3K pathways were found to be involved in MMP-9-mediated cell migration. In conclusion, we demonstrated that MMPs utilize a non-proteolytic mechanism to enhance epithelial cell migration. We propose that hemopexin homodimer formation is required for the full cell migratory function of proMMP-9. 相似文献
14.
Existing data suggest the extracellular matrix (ECM) of vertebrate skeletal muscle consists of several morphologically distinct layers: an endomysium, perimysium, and epimysium surrounding muscle fibers, fascicles, and whole muscles, respectively. These ECM layers are hypothesized to serve important functional roles within muscle, influencing passive mechanics, providing avenues for force transmission, and influencing dynamic shape changes during contraction. The morphology of the skeletal muscle ECM is well described in mammals and birds; however, ECM morphology in other vertebrate groups including amphibians, fish, and reptiles remains largely unexamined. It remains unclear whether a multilayered ECM is a common feature of vertebrate skeletal muscle, and whether functional roles attributed to the ECM should be considered in mechanical analyses of non-mammalian and non-avian muscle. To explore the prevalence of a multilayered ECM, we used a cell maceration and scanning electron microscopy technique to visualize the organization of ECM collagen in muscle from six vertebrates: bullfrogs (Lithobates catesbeianus), turkeys (Meleagris gallopavo), alligators (Alligator mississippiensis), cane toads (Rhinella marina), laboratory mice (Mus musculus), and carp (Cyprinus carpio). All muscles studied contained a collagen-reinforced ECM with multiple morphologically distinct layers. An endomysium surrounding muscle fibers was apparent in all samples. A perimysium surrounding groups of muscle fibers was apparent in all but carp epaxial muscle; a muscle anatomically, functionally, and phylogenetically distinct from the others studied. An epimysium was apparent in all samples taken at the muscle periphery. These findings show that a multilayered ECM is a common feature of vertebrate muscle and suggest that a functionally relevant ECM should be considered in mechanical models of vertebrate muscle generally. It remains unclear whether cross-species variations in ECM architecture are the result of phylogenetic, anatomical, or functional differences, but understanding the influence of such variation on muscle mechanics may prove a fruitful area for future research. 相似文献
15.
Rucavado A Escalante T Teixeira CF Fernándes CM Diaz C Gutiérrez JM 《Mediators of inflammation》2002,11(2):121-128
Envenomations by the snake Bothrops asper are characterized by prominent local tissue damage (i.e. myonecrosis), blistering, hemorrhage and edema. Various phospholipases A2 and metalloproteinases that induce local pathological alterations have been purified from this venom. Since these toxins induce a conspicuous inflammatory response, it has been hypothesized that inflammatory mediators may contribute to the local pathological alterations described. This study evaluated the local production of cytokines and matrix metalloproteinases (MMPs) as a consequence of intramuscular injections of an Asp-49 myotoxic phospholipase A2 (myotoxin III (MT-III)) and a P-I type hemorrhagic metalloproteinase (BaP1) isolated from B. asper venom. Both enzymes induced prominent tissue alterations and conspicuous increments in interleukin (IL)-1beta, IL-6 and a number of MMPs, especially gelatinase MMP-9, rapidly after injection. In contrast, no increments in tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma were detected. In agreement, MT-III and BaP1 did not induce the synthesis of TNF-alpha by resident peritoneal macrophages in vitro. Despite the conspicuous expression of latent forms of MMPs in muscle, evidenced by zymography, there were no increments in activated MMP-2 and only a small increase in activated MMP-9, as detected by a functional enzymatic assay. This suggests that MMP activity was regulated by a highly controlled activation of latent forms and, probably, by a concomitant synthesis of MMP inhibitors. Since no hemorrhage nor dermonecrosis were observed after injection of MT-III, despite a prominent increase in MMP expression, and since inflammatory exudate did not enhance hemorrhage induced by BaP1, it is suggested that endogenous MMPs released in the tissue are not responsible for the dermonecrosis and hemorrhage characteristic of B. asper envenomation. Moreover, pretreatment of mice with the peptidomimetic MMP inhibitor batimastat did not reduce myotoxic nor edema-forming activities of MT-III, suggesting that MMPs do not play a prominent role in the pathogenesis of these effects in this experimental model. It is concluded that MT-III and BaP1 induce a local inflammatory response associated with the synthesis of IL-1beta, IL-6 and MMPs. MMPs do not seem to play a prominent role in the acute local pathological alterations induced by these toxins in this experimental model. 相似文献
16.
Role of adiponectin in human skeletal muscle bioenergetics 总被引:4,自引:0,他引:4
Civitarese AE Ukropcova B Carling S Hulver M DeFronzo RA Mandarino L Ravussin E Smith SR 《Cell metabolism》2006,4(1):75-87
Insulin resistance is associated with impaired skeletal muscle oxidation capacity and reduced mitochondrial number and function. Here, we report that adiponectin signaling regulates mitochondrial bioenergetics in skeletal muscle. Individuals with a family history of type 2 diabetes display skeletal muscle insulin resistance and mitochondrial dysfunction; adiponectin levels strongly correlate with mtDNA content. Knockout of the adiponectin gene in mice is associated with insulin resistance and low mitochondrial content and reduced mitochondrial enzyme activity in skeletal muscle. Adiponectin treatment of human myotubes in primary culture induces mitochondrial biogenesis, palmitate oxidation, and citrate synthase activity, and reduces the production of reactive oxygen species. The inhibition of adiponectin receptor expression by siRNA, or of AMPK by a pharmacological agent, blunts adiponectin induction of mitochondrial function. Our findings define a skeletal muscle pathway by which adiponectin increases mitochondrial number and function and exerts antidiabetic effects. 相似文献
17.
J Swierczyński 《Postepy biochemii》1984,30(3-4):251-271
18.
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell–ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell–ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell–ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this “extracellular matrix dimension” should be added to our conceptual network of factors contributing to skeletal myogenesis. 相似文献
19.
Skeletal muscle formation during development and the adult mammal consists of a highly organised and regulated the sequence of cellular processes intending to form or repair muscle tissue. This sequence includes, cell proliferation, migration, and differentiation. Proteoglycans (PGs), macromolecules formed by a core protein and glycosaminoglycan chains (GAGs) present a great diversity of functions explained by their capacity to interact with different ligands and receptors forming part of their signalling complex and/or protecting them from proteolytic cleavage. Particularly attractive is the function of the different types of PGs present at the neuromuscular junction (NMJ). This review is focussed on the advances reached to understand the role of PGs during myogenesis and skeletal muscular dystrophies. 相似文献
20.
Role of matrix metalloproteinases and their inhibitors in tumor invasion and metastasis 总被引:9,自引:0,他引:9
Khasigov PZ Podobed OV Gracheva TS Salbiev KD Grachev SV Berezov TT 《Biochemistry. Biokhimii?a》2003,68(7):711-717
The role of various matrix metalloproteinases (MMP)—such as gelatinases, stromelysins, matrilysin, collagenase-3, and membrane-bound MMP (MB-MMP)—in tumor invasion and metastasis is discussed. Data suggesting significance for malignant growth of the expression level of these enzymes and also of their activators and inhibitors are presented. It is concluded that at different stages of tumor progression the activity of different MMPs is displayed, which is regulated by various growth factors and oncogenes. Different malignancies are characterized by changes in activities of specific MMPs. Data are presented which show significance of the ratio between the MMP activity and that of tissue inhibitors of metalloproteinases (TIMP) in tumor invasion and metastasis, especially in connection with a dual role of TIMP as both MMP inhibitors and activators. 相似文献