首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Voltage-gated calcium channels (VGCC) are involved in a large variety of cellular Ca2+ signaling processes, including exocytosis, a Ca2+ dependent release of neurotransmitters and hormones.Great progress has been made in understanding the mode of action of VGCC in exocytosis, a process distinguished by two sequential yet independent Ca2+ binding reactions. First, Ca2+ binds at the selectivity filter, the EEEE motif of the VGCC, and second, subsequent to a brief and intense Ca2+ inflow to synaptotagmin, a vesicular protein. Inquiry into the functional and physical interactions of the channels with synaptic proteins has demonstrated that exocytosis is triggered during the initial Ca2+ binding at the channel pore, prior to Ca2+ entry. Accordingly, a cycle of secretion begins by an incoming stimulus that releases vesicles from a releasable pool upon Ca2+ binding at the pore, and at the same time, the transient increase in [Ca2+]i primes a fresh set of non-releasable vesicles, to be fused by the next incoming stimulus.We propose a model, in which the Ca2+ binding at the EEEE motif and the consequent conformational changes in the channel are the primary event in triggering secretion, while synaptotagmin acts as a vesicle docking protein. Thus, the channel serves as the molecular On/Off signaling switch, where the predominance of a conformational change in Ca2+-bound channel provides for the fast secretory process.  相似文献   

3.
Abstract: Metal selectivity of exocytosis was analyzed by comparing the effects of polyvalent metal cations Ca2+, Ba2+, Sr2+, Pb2+, La3+, Cd2+, Co2+, Tb3+, Mn2+, and Zn2+ on the release of norepinephrine (NE) from staphylococcal α-toxin-permeabilized bovine chromaffin cells. Pb2+, La3+, Cd2+, Sr2+, and Ba2+ activated NE secretion accompanied by the release of intragranular dopamine β-hydroxylase but not cytosolic lactate dehydrogenase, indicating the activation of the mechanism of exocytosis. The release triggered by saturating concentrations of Pb2+, La3+, Cd2+, and Sr2+ was nonadditive with Ca2+, indicating a common site of action. In contrast, the Ba2+-evoked NE release was additive with Ca2+ and the Ca2+ agonists Pb2+, La3+, Cd2+, and Sr2+, suggesting that Ba2+ activates secretion at a site distinct from the Ca2+ receptor. In distinction to the NE release evoked by Pb2+, La3+, Cd2+, and Ba2+, the Sr2+-evoked NE release was associated with a significant elevation of Ca2+ concentration in the medium and abolished by Ca2+ chelation. This indicates that the secretagogue effect of Sr2+ was indirect and secondary to the displacement of bound Ca2+. Co2+ and Mn2+ inhibited the NE release evoked by Ca2+, Sr2+, Pb2+, La3+, and Cd2+ but had no effect on the Ba2+-dependent secretion. Tb3+ and Zn2+ were without effect on exocytosis.  相似文献   

4.
Glutamate scanning mutagenesis was used to assess the role of the calcicludine binding segment in regulating channel permeation and gating using both Ca2+ and Ba2+ as charge carriers. As expected, wild-type CaV1.2 channels had a Ba2+ conductance ~2× that in Ca2+ (GBa/GCa = 2) and activation was ~10 mV more positive in Ca2+ vs. Ba2+. Of the 11 mutants tested, F1126E was the only one that showed unique permeation and gating properties compared to the wild type. F1126E equalized the CaV1.2 channel conductance (GBa/GCa = 1) and activation voltage dependence between Ca2+ and Ba2+. Ba2+ permeation was reduced because the interactions among multiple Ba2+ ions and the pore were specifically altered for F1126E, which resulted in Ca2+-like ionic conductance and unitary current. However, the high-affinity block of monovalent cation flux was not altered for either Ca2+ or Ba2+. The half-activation voltage of F1126E in Ba2+ was depolarized to match that in Ca2+, which was unchanged from that in the wild type. As a result, the voltages for half-activation and half-inactivation of F1126E in Ba2+ and Ca2+ were similar to those of wild-type in Ca2+. This effect was specific to F1126E since F1126A did not affect the half-activation voltage in either Ca2+ or Ba2+. These results indicate that residues in the outer vestibule of the CaV1.2 channel pore are major determinants of channel gating, selectivity, and permeation.  相似文献   

5.
In response to excitation of skeletal muscle fibers, trains of action potentials induce changes in the configuration of the dihydropyridine receptor (DHPR) anchored in the tubular membrane which opens the Ca2+ release channel in the sarcoplasmic reticulum membrane. The DHPR also functions as a voltage-gated Ca2+ channel that conducts L-type Ca2+ currents routinely recorded in mammalian muscle fibers, which role was debated for more than four decades. Recently, to allow a closer look into the role of DHPR Ca2+ influx in mammalian muscle, a knock-in (ki) mouse model (ncDHPR) carrying mutation N617D (adjacent to domain II selectivity filter E) in the DHPRα1S subunit abolishing Ca2+ permeation through the channel was generated [Dayal et al., 2017]. In the present study, the Mn2+ quenching technique was initially intended to be used on voltage-clamped muscle fibers from this mouse to determine whether Ca2+ influx through a pathway distinct from DHPR may occur to compensate for the absence of DHPR Ca2+ influx. Surprisingly, while N617D DHPR muscle fibers of the ki mouse do not conduct Ca2+, Mn2+ entry and subsequent quenching did occur because Mn2+ was able to permeate and produce L-type currents through N617D DHPR. N617D DHPR was also found to conduct Ba2+ and Ba2+ currents were strongly blocked by external Ca2+. Ba2+ permeation was smaller, current kinetics slower and Ca2+ block more potent than in wild-type DHPR. These results indicate that residue N617 when replaced by the negatively charged residue D is suitably located at entrance of the pore to trap external Ca2+ impeding in this way permeation. Because Ba2+ binds with lower affinity to D, Ba2+ currents occur, but with reduced amplitudes as compared to Ba2+ currents through wild-type channels. We conclude that mutations located outside the selectivity filter influence channel permeation and possibly channel gating in a fully differentiated skeletal muscle environment.  相似文献   

6.
Strontium (Sr(2+)), Barium (Ba(2+)) and Lanthanum (La(3+)) can substitute for Ca(2+) in driving synaptic transmission during membrane depolarization. Ion recognition at the polyglutamate motif (EEEE), comprising the channel selectivity-filter, during voltage-driven transitions, controls the kinetics of the voltage-gated calcium channel (VGCC) and its interactions with the synaptic proteins. We tested the effect of different charge carriers on evoked-release, as a means of exploring the involvement of VGCC in the fusion pore configuration. Employing amperometry recordings in single bovine chromaffin cells we show that the size of the fusion pore, designated by the 'foot'-amplitude, was increased when Ba(2+) substituted for Ca(2+) and decreased, with La(3+). The fusion pore stability, indicated by 'foot'-width, was decreased in La(3+). Also, the mean open time of the fusion pore (tau(fp)) was significantly lower in Sr(2+) and La(3+) compared to Ba(2+) and Ca(2+). These cations when occupying the selectivity filter reduced the spike frequency in the order of Ca(2+) > Sr(2+) > Ba(2+) > La(3+), which is parallel to the reduction in total catecholamine release. The correlation between ion binding at the selectivity filter and fusion pore properties supports a model in which the Ca(2+) channel regulates secretion through a site at the selectivity filter, upstream to cation entry into the cell.  相似文献   

7.
In order to address the mechanism whereby Ca2+ wad crucial for the manifestation of the enzymatic activity of phospholipase A2 (PLA2), four divalent cations were used to assess their influences on the catalytic activity and the fine structures ofNaja naja atra PLA2. It was found that substitution of Mg2+ or Sr2+ for Ca2+ in the substrate solution caused a decrease in the PLA2 activity to 77.5% or 54.5%, respectively, of that in the presence of Ca2+. However, no PLA2 activity was observed with the addition of Ba2+. With the exception of Mg2+, the nonpolarity of the 8-anilinonaphthalene-1-sulfonate (ANS)-binding site of PLA2 markedly increased with the binding of cations to PLA2. In the meantime, the accessibilities of Lys-6 (65) and Tyr-3 (63) toward trinitrobenzene sulfonate andp-nitrobenzenesulfonyl fluoride were enhanced by the addition of Ca2+, Sr2+, and Ba2+, but not by Mg2+. The order of the ability of cations to enhance the ANS fluorescence and the reactivity of Lys and Tyr residues toward modified reagents was Ba2+> Sr2+> Ca2+> Mg2+, which was the same order as the increase in their atomic radii. These results, together with the observations that the ANS molecule binds at the active site of PLA2 and that Tyr-3, Lys-6, and Tyr-63 of PLA2 are involved in the binding with the substrate, suggest that the binding of Ca2+ to PLA2 induces conformational changes at the active site and substrate-binding site. However, the smaller atomic radius with Mg2+ or the bigger atomic radii with Sr2+ and Ba2+ might render the conformation improperly rearranged after their binding to PLA2 molecule.  相似文献   

8.
Current through L-type calcium channels (CaV1.2 or dihydropyridine receptor) can be blocked by micromolar concentrations of trivalent cations like the lanthanide gadolinium (Gd3+). It has been proposed that trivalent block is due to ions competing for a binding site in both the open and closed configuration, but possibly with different trivalent affinities. Here, we corroborate this general view of trivalent block by computing conductance of a model L-type calcium channel. The model qualitatively reproduces the Gd3+ concentration dependence and the effect that substantially more Gd3+ is required to produce similar block in the presence of Sr2+ (compared to Ba2+) and even more in the presence of Ca2+. Trivalent block is explained in this model by cations binding in the selectivity filter with the charge/space competition mechanism. This is the same mechanism that in the model channel governs other selectivity properties. Specifically, selectivity is determined by the combination of ions that most effectively screen the negative glutamates of the protein while finding space in the midst of the closely packed carboxylate groups of the glutamate residues.  相似文献   

9.
Potassium channels selectively conduct K+ ions across cell membranes and have key roles in cell excitability. Their opening and closing can be spontaneous or controlled by membrane voltage or ligand binding. We used Ba2+ as a probe to determine the location of the ligand-sensitive gate in an inwardly rectifying K+ channel (Kir6.2). To a K+ channel, Ba2+ and K+ are of similar sizes, but Ba2+ blocks the pore by binding within the selectivity filter. We found that internal Ba2+ could still access its binding site when the channel was shut, which indicates that the ligand-sensitive gate lies above the Ba2+-block site, and thus within or above the selectivity filter. This is in marked contrast to the voltage-dependent gate of KV channels, which is located at the intracellular mouth of the pore.  相似文献   

10.
In order to explore the role of mitochondria in proliferation promotion and/or apoptosis induction of lanthanum, the mutual influences between La3+ and Ca2+ on mitochondrial permeability transition pore (PTP) opening were investigated with isolated mitochondria from rat liver. The experimental results revealed that La3+ influence the state of mitochondria in a concentration-dependent biphasic manner. La3+ in nanomolar concentrations, acting as a Ca2+ analog, entered mitochondrial matrix via the RuR sensitive Ca2+ channel and elevated ROS level, leading to opening of PTP indicated by mitochondrial swelling, reduction of ΔΨm and cytochrome c release. Inhibition of PTP with 10 μM CsA attenuated the effects of La3+. However, micromolar concentrations La3+ acted mainly as a Ca2+ antagonist, inhibiting PTP opening induced by Ca2+. We postulated that this action of La3+ on mitochondria through interaction with Ca2+ might be involved in the proliferation-promoting and apoptosis induction by La3+.  相似文献   

11.
Ion selectivity of voltage-activated sodium channels is determined by amino-acid residues in the pore regions of all four homologous repeats. The major determinants are the residues DEKA (for repeats I-IV) which form a putative ring structure in the pore; the homologous structure in Ca-channels consists of EEEE. By combining site-directed mutagenesis of a non-inactivating form of the rat brain sodium channel II with electrophysiological methods, we attempted to quantify the importance of charge, size, and side-chain position of the amino-acid residues within this ring structure on channel properties such as monovalent cation selectivity, single-channel conductance, permeation and selectivity of divalent cations, and channel block by extracellular Ca2+ and tetrodotoxin (TTX). In all mutant channels tested, even those with the same net charge in the ring structure as the wild type, the selectivity for Na+ and Li+ over K+, Rb+, Cs+, and NH4 + was significantly reduced. The changes in charge did not correlate in a simple fashion with the single-channel conductances. Permeation of divalent ions (Ca2+, Ba2+, Sr2+, Mg2+, Mn2+) was introduced by some of the mutations. The IC50 values for the Ca2+ block of Na+ currents decreased exponentially with increasing net negative charge of the selectivity ring. The sensitivity towards channel block by TTX was reduced in all investigated mutants. Mutations in repeat IV are an exception as they caused smaller effects on all investigated channel properties compared with the other repeats. Received: 24 July 1996 / Accepted: 12 September 1996  相似文献   

12.
A physical model of selective “ion binding” in the L-type calcium channel is constructed, and consequences of the model are compared with experimental data. This reduced model treats only ions and the carboxylate oxygens of the EEEE locus explicitly and restricts interactions to hard-core repulsion and ion–ion and ion–dielectric electrostatic forces. The structural atoms provide a flexible environment for passing cations, thus resulting in a self-organized induced-fit model of the selectivity filter. Experimental conditions involving binary mixtures of alkali and/or alkaline earth metal ions are computed using equilibrium Monte Carlo simulations in the grand canonical ensemble. The model pore rejects alkali metal ions in the presence of biological concentrations of Ca2+ and predicts the blockade of alkali metal ion currents by micromolar Ca2+. Conductance patterns observed in varied mixtures containing Na+ and Li+, or Ba2+ and Ca2+, are predicted. Ca2+ is substantially more potent in blocking Na+ current than Ba2+. In apparent contrast to experiments using buffered Ca2+ solutions, the predicted potency of Ca2+ in blocking alkali metal ion currents depends on the species and concentration of the alkali metal ion, as is expected if these ions compete with Ca2+ for the pore. These experiments depend on the problematic estimation of Ca2+ activity in solutions buffered for Ca2+ and pH in a varying background of bulk salt. Simulations of Ca2+ distribution with the model pore bathed in solutions containing a varied amount of Li+ reveal a “barrier and well” pattern. The entry/exit barrier for Ca2+ is strongly modulated by the Li+ concentration of the bath, suggesting a physical explanation for observed kinetic phenomena. Our simulations show that the selectivity of L-type calcium channels can arise from an interplay of electrostatic and hard-core repulsion forces among ions and a few crucial channel atoms. The reduced system selects for the cation that delivers the largest charge in the smallest ion volume.  相似文献   

13.
L-type Ca2+ channels select for Ca2+ over sodium Na+ by an affinity-based mechanism. The prevailing model of Ca2+ channel permeation describes a multi-ion pore that requires pore occupancy by at least two Ca2+ ions to generate a Ca2+ current. At [Ca2+] < 1 μM, Ca2+ channels conduct Na+. Due to the high affinity of the intrapore binding sites for Ca2+ relative to Na+, addition of μM concentrations of Ca2+ block Na+ conductance through the channel. There is little information, however, about the potential for interaction between Na+ and Ca2+ for the second binding site in a Ca2+ channel already occupied by one Ca2+. The two simplest possibilities, (a) that Na+ and Ca2+ compete for the second binding site or (b) that full time occupancy by one Ca2+ excludes Na+ from the pore altogether, would imply considerably different mechanisms of channel permeation. We are studying permeation mechanisms in N-type Ca2+ channels. Similar to L-type Ca2+ channels, N-type channels conduct Na+ well in the absence of external Ca2+. Addition of 10 μM Ca2+ inhibited Na+ conductance by 95%, and addition of 1 mM Mg2+ inhibited Na+ conductance by 80%. At divalent ion concentrations of 2 mM, 120 mM Na+ blocked both Ca2+ and Ba2+ currents. With 2 mM Ba2+, the IC50 for block of Ba2+ currents by Na+ was 119 mM. External Li+ also blocked Ba2+ currents in a concentration-dependent manner, with an IC50 of 97 mM. Na+ block of Ba2+ currents was dependent on [Ba2+]; increasing [Ba2+] progressively reduced block with an IC50 of 2 mM. External Na+ had no effect on voltage-dependent activation or inactivation of the channel. These data suggest that at physiological concentrations, Na+ and Ca2+ compete for occupancy in a pore already occupied by a single Ca2+. Occupancy of the pore by Na+ reduced Ca2+ channel conductance, such that in physiological solutions, Ca2+ channel currents are between 50 and 70% of maximal.  相似文献   

14.
Despite the progress in studies of the properties and functions of low-threshold calcium channels (LTCCs) [1], the mechanisms of their selectivity and permeability remain unstudied in detail. We performed a comparative analysis of the selectivity of three cloned pore-forming LTCC subunits (α1G, α1H, and α1I) functionally expressed in Xenopus oocytes with respect to bivalent alkaline-earth metal cations (Ba2+, Ca2+, and Sr2+. The relative conductivities (G) of these channels were determined according to the amplitudes of macroscopic currents (I) and potentials of zero currents (E). The currents were recorded after preliminary intracellular injection of a fast calcium buffer, BAPTA, in order to suppress the endogenous calcium-dependent chloride conductivity. Channels formed by α1G subunits demonstrated the following ratios of the amplitudes of macroscopic currents and potentials of zero current: I Ca:I Ba:I Sr = 1.00:0.75:1.12 and E CaE BaE Sr. For channels that were formed by α1H and α1I subunits, these ratios were as follows: I Ca:I Ba:I Sr = 1.00:1.20:1.17, E CaE BaE Sr and I Ca:I Ba:I Sr = 1.00:1.48: 1.45, E CaE BaE Sr respectively. The different macroscopic conductivities and similar potentials of zero current typical of α1G and α1I channels indicate that, probably, various bivalent cations can in a differential manner influence the stochastic parameters of functioning of these channels. At the same time, channels formed by α1H subunits are characterized by more positive potentials of zero current for Ca2+. It seems possible that the selectivity of the above channels is determined by mechanisms that mediate the selectivity of most high-threshold calcium channels (more affine binding of Ca2+ inside the pore). Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 319–329, July–August, 2005.  相似文献   

15.
Glucose sensing mechanism has been intensively studied in pancreatic cells and neurons. Depolarization of membrane potential by closure of KATP , Kv and TASK channel, and subsequently Ca2+ entry via L-type voltage gated Ca2+ channel (VGCC) are implicated to mediate the signal transduction in these cells. However, the mechanism of non-excitable cells, which are lacking VGCC, for sensing glucose remains unclear. In this study, we utilized the calcium ratio measurement and patch clamping technique to study the effects of low glucose on [Ca2+]i and currents in the human embryonic kidney epithelial cells (HEK 293). We found low glucose evoked a significant reversible [Ca2+]i elevation in HEK 293 independent of the closure of Kv channels. This increase of [Ca2+]i was mediated by Ca2+ entry across plasma membrane and exhibited a dosage dependent behaviour to external glucose concentration. The low glucose-induced entry of Ca2+ was characterized as a voltage independent behaviour and had cation permeability to Na+ and Ca2+. The modulation of PLC, AMPK, tyrosine kinase and cADPribose failed to regulate this glucose-sensitive Ca2+ entry. In addition, the entry of Ca2+ was insensitive to nifedipine, 2APB, SKF, La3+, Gd3+, and KBR9743, suggesting a novel signal pathway in mediating glucose sensing.  相似文献   

16.
Extracellular Ca2+ is required for capacitation and fertilization in the mouse, but very little is known about the ability of other divalent cations to substitute for Ca2+. In this study, Sr2+, Ba2+, and Mg2+ were evaluated for their ability to support capacitation, the acrosome reaction, hyperactivated motility, and fertilization. Ba2+ proved to be ineffective, but Mg2+-containing medium was able to support capacitation to a greater extent than unsupplemented Ca2+-deficient media; despite this, Ca2+ was required for fertilization. In contrast, Sr2+ proved capable of substituting for Ca2+ in all events. Furthermore, Sr2+-induced responses were indistinguishable from the corresponding Ca2+-induced ones: Sperm capacitated at the same rate and underwent the acrosome reaction to the same extent. However, demonstration of sperm:egg fusion in Sr2+ required the use of zona-free eggs. This was due not to the inability of the sperm to penetrate the zona but to the very rapid activation and cortical granule release by eggs in response to Sr2+. When zona-intact eggs were used, the block to polyspermy had been mounted by the time sperm had penetrated the zona. A 15 min exposure to Sr2+ was sufficient to block sperm fusion, but a longer exposure was required to ensure the resumption of meiosis in eggs; such a response was surprising in that the eggs were freshly ovulated and not susceptible to activation by many different treatments. Thus Sr2+ can profoundly affect both gametes in the mouse: It substitutes completely for Ca2+ in sperm responses and rapidly activates eggs, possibly by displacing Ca2+ from intracellular stores into the cytoplasm, where the Ca2+ can then trigger the various events of activation.  相似文献   

17.
P2X2 purinoceptors are cation-selective channels activated by ATP and its analogues. Using single channel measurements we studied the channel's selectivity for the alkali metal ions and organic monovalent cations NMDG+, Tris+, TMA+, and TEA+. The selectivity sequence for currents carried by alkali metal ions is: K+ > Rb+ > Cs+ > Na+ > Li+, which is Eisenman sequence IV. This is different from the mobility sequence of the ions in free solution suggesting there is weak interaction between the ions and the channel interior. The relative conductance for alkali ions increases linearly in relation to the Stokes radius. The organic ions NMDG+, Tris+, TMA+ and TEA+ were virtually impermeant. The divalent ions (Mn2+, Mg2+, Ca2+ and Ba2+) induced a fast block visible as a reduction in amplitude of the unitary currents. Using a single-site binding model, the divalent ions exhibited an equilibrium affinity sequence of Mn2+ > Mg2+ > Ca2+ > Ba2+. Received: 3 May 1999/Revised: 23 August 1999  相似文献   

18.
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X (FXa)-binding protein with both anticoagulant and hypotensive activities. The thermodynamics of the binding of alkaline earth metal ions to ACF II and their effects on the stability of ACF II and the binding of ACF II to FXa were investigated by isothermal titration calorimetry, fluorescence, differential scanning calorimetry, and surface plasmon resonance. The binding of ACF II to FXa does not have an absolute requirement for Ca2+. Mg2+, Sr2+, and Ba2+ can induce the binding of ACF II to FXa. The radii of the cations bound in ACF II crucially affect the binding affinity of ACF II for cations and the structural stability of ACF II against guanidine hydrochloride and thermal denaturation, whereas the radii of cations bound in FXa markedly affect the binding affinity between ACF II and FXa. The binding affinities of ACF II for cations and the capacities of metal-induced stabilization of ACF II follow the same trend: Ca2+ > Sr2+ > Ba2+. The metal-induced binding affinities of ACF II for FXa follow the trend Mg2+ > Ca2+ > Sr2+ > Ba2+. Although Mg2+ shows significantly low binding affinity with ACF II, Mg2+ is the most effective to induce the binding of ACF II with FXa. Our observations suggest that in blood the bindings of Ca2+ in two sites of ACF II increase the structural stability of ACF II, but these bindings are not essential for the binding of ACF II with FXa, and that the binding of Mg2+ and Ca2+ to FXa may be essential for the recognition between FXa and ACF II. Like Ca2+, the abundant Mg2+ in blood also plays an important role in the anticoagulation of ACF II.  相似文献   

19.
A Paramecium cell responded to heat and cold stimuli, exhibiting increased frequency of directional changes in its swimming behavior. The increase in the frequency of directional changes was maintained during heating, but was transient during cooling. Although variations were large, as expected with this type of electrophysiological recording, results consistently showed a sustained depolarization of deciliated cells in response to heating. Depolarizations were also consistently observed upon cooling. However, these depolarizations were transient and not continuous throughout the cooling period. These depolarizations were lost or became small in Ca2+-free solutions. In a voltage-clamped cell, heating induced a continuous inward current and cooling induced a transient inward current under conditions where K+ currents were suppressed. The heat-induced inward current was not affected significantly by replacing extracellular Ca2+ with equimolar concentrations of Ba2+, Sr2+, Mg2+, or Mn2+, and was lost upon replacing with equimolar concentration of Ni2+. On the other hand, the cold-induced inward current was not affected significantly by Ba2+, or Sr2+, however the decay of the inward current was slowed and was lost or became small upon replacing with equimolar concentrations of Mg2+, Mn2+, or Ni2+. These results indicate that Paramecium cells have heat-activated Ca2+ channels and cold-activated Ca2+ channels and that the cold-activated Ca2+ channel is different from the heat-activated Ca2+ channel in the ion selectivity and the calcium-dependent inactivation. Received: 9 September 1998/Revised: 22 January 1999  相似文献   

20.
The movement and interaction of multiple ions passing through in single file underlie various fundamental K+ channel properties, from the effective conduction of K+ ions to channel blockade by Ba2+ ions. In this study, we used single-channel electrophysiology and x-ray crystallography to probe the interactions of Ba2+ with permeant ions within the ion conduction pathway of the MthK K+ channel. We found that, as typical of K+ channels, the MthK channel was blocked by Ba2+ at the internal side, and the Ba2+-blocking effect was enhanced by external K+. We also obtained crystal structures of the MthK K+ channel pore in both Ba2+–Na+ and Ba2+–K+ environments. In the Ba2+–Na+ environment, we found that a single Ba2+ ion remained bound in the selectivity filter, preferably at site 2, whereas in the Ba2+–K+ environment, Ba2+ ions were predominantly distributed between sites 3 and 4. These ionic configurations are remarkably consistent with the functional studies and identify a molecular basis for Ba2+ blockade of K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号