首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eleftherianos I  Schneider D 《Fly》2011,5(3):247-254
Drosophila has been established as useful model for infectious diseases because it allows large numbers of whole animals to be studied and provides powerful genetic tools and conservation with signaling and pathogenesis mechanisms in vertebrates. During the past twenty years, significant progress has been made on the characterization of innate immune responses against various pathogenic organisms in flies (Fig. 1). In this year's Drosophila Research Conference, which was held in San Diego (March 30-April 3) and sponsored by the Genetics Society of America, the immunity and pathogenesis session comprised seven platform presentations and 34 posters that highlighted the latest advances in Drosophila infection and immunity field. The presented work covered a wide range of studies from immune signaling pathways and the molecular basis of humoral and cellular immune mechanisms to the role of endosymbionts in fly immune function and effects of immune priming. Here, we give an overview of the presented work and we explain how these findings will open new avenues in Drosophila immunity research.  相似文献   

2.
Nathan T Mortimer 《Fly》2013,7(4):242-248
In nature, larvae of the fruit fly Drosophila melanogaster are commonly infected by parasitoid wasps. Following infection, flies mount an immune response termed cellular encapsulation in which fly immune cells form a multilayered capsule that covers and kills the wasp egg. Parasitoids have thus evolved virulence factors to suppress cellular encapsulation. To uncover the molecular mechanisms underlying the antiwasp response, we and others have begun identifying and functionally characterizing these virulence factors. Our recent work on the Drosophila parasitoid Ganaspis sp.1 has demonstrated that a virulence factor encoding a SERCA-type calcium pump plays an important role in Ganaspis sp.1 virulence. This venom SERCA antagonizes fly immune cell calcium signaling and thereby prevents the activation of the encapsulation response. In this way, the study of wasp virulence factors has revealed a novel aspect of fly immunity, namely a role for calcium signaling in fly immune cell activation, which is conserved with human immunity, again illustrating the marked conservation between fly and mammalian immune responses. Our findings demonstrate that the cellular encapsulation response can serve as a model of immune cell function and can also provide valuable insight into basic cell biological processes.  相似文献   

3.
The fruit fly Drosophila melanogaster has been successfully used to study numerous biological processes including immune response. Flies are naturally infected with more than twenty RNA viruses making it a valid model organism to study host-pathogen interactions during viral infections. The Drosophila antiviral immunity includes RNA interference, activation of the JAK/STAT and other signaling cascades and other mechanisms such as autophagy and interactions with other microorganisms. Here we review Drosophila as an immunological research model as well as recent advances in the field of Drosophila antiviral immunity.  相似文献   

4.
SARM1 is the founding member of the TIR-domain family of NAD+ hydrolases and the central executioner of pathological axon degeneration. SARM1-dependent degeneration requires NAD+ hydrolysis. Prior to the discovery that SARM1 is an enzyme, SARM1 was studied as a TIR-domain adaptor protein with non-degenerative signaling roles in innate immunity and invertebrate neurodevelopment, including at the Drosophila neuromuscular junction (NMJ). Here we explore whether the NADase activity of SARM1 also contributes to developmental signaling. We developed transgenic Drosophila lines that express SARM1 variants with normal, deficient, and enhanced NADase activity and tested their function in NMJ development. We find that NMJ overgrowth scales with the amount of NADase activity, suggesting an instructive role for NAD+ hydrolysis in this developmental signaling pathway. While degenerative and developmental SARM1 signaling share a requirement for NAD+ hydrolysis, we demonstrate that these signals use distinct upstream and downstream mechanisms. These results identify SARM1-dependent NAD+ hydrolysis as a heretofore unappreciated component of developmental signaling. SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions.  相似文献   

5.
A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol‐related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll‐like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila‐specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster.  相似文献   

6.
7.
Innate immunity is an evolutionarily conserved self-defense mechanism against microbial infections. In Drosophila, induction of antimicrobial peptides is a major immune response that is regulated by two distinct signaling pathways called the IMD pathway and the Toll pathway, similar to the tumor necrosis factor-alpha signaling and Toll-like receptor/interleukin-1 signaling pathways, respectively, in mammals. In mammals, innate immunity interacts with adaptive immunity and has a key role in the regulated immune response. Therefore, innate immunity is a pharmaceutical target for the development of immune regulators. Previously, based on the striking conservation between the mechanisms that regulate Drosophila immunity and human innate immunity, we established an ex vivo culture in which compounds acting on innate immunity can be evaluated using a reporter gene that reflects activation of the IMD pathway [Yajima et al. [Yajima, M., Takada, M., Takahashi, N., Kikuchi, H., Natori, S., Oshima, Y., Kurata, S., 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity. The Biochemical Journal 371(Pt 1), 205-210] Biochem J 371, 205-210]. Here, we combined the ex vivo culture with a reporter gene that reflects the heat shock response and demonstrated that the resulting systems are useful for screening compounds that act specifically on innate immunity, including mammalian innate immune responses. Identification of target molecules is essential for the development of more potent medicines with fewer side effects. In this study, we also established ex vivo systems capable of identifying target molecules of the identified compounds using targeted activation of the IMD pathway.  相似文献   

8.
9.
Pathogen recognition by the plant innate immune system invokes a sophisticated signal transduction network that culminates in disease resistance. The Arabidopsis protein RIN4 is a well-known regulator of plant immunity. However, the molecular mechanisms by which RIN4 controls multiple immune responses have remained elusive. in our recently published study, we purified components of the RIN4 protein complex from A. thaliana and identified several novel RIN4-associated proteins.1 we found that one class of RIN4-associated proteins, the plasma membrane H+-ATPases AHA1 and AHA2, play a crucial role in resisting pathogen invasion. Plants use RIN4 to regulate H+-ATPase activity during immune responses, thereby controlling stomatal apertures during pathogen attack. Stomata were previously identified as active regulators of plant immune responses during pathogen invasion, but how the plant innate immune system coordinates this response was unknown.2,3 Our investigations have revealed a novel function of rin4 during pathogenesis. Here, we discuss the rin4-AHA1/2 interaction and highlight additional RIN4-associated proteins (RAPs) as well as speculate on their potential roles in plant innate immunity.Key words: RIN4, PAMP-triggered immunity, effector-triggered immunity, protein complex, innate immunity  相似文献   

10.
11.
《Fly》2013,7(3):159-164
Despite, or perhaps because of, the fact that fruit flies spend much of their lives surrounded by microbes, they do not readily succumb to infectious disease. For nearly fifteen years, Drosophila melanogaster has been a fruitful model system for studying the molecular genetics of innate immunity. This year, studies of infection and immunity featured prominently in several sessions during the 49th Annual Drosophila Research Conference, sponsored by the Genetics Society of America and held in San Diego last April. The breadth of the presentations was a testament to progress in the study of immunity in fruit flies, with research presentations considering not only the molecular biology of cellular and humoral immunity, but also the maintenance of natural genetic variation in immune competence, physiological correlates of immunity, and pathogen virulence mechanisms and interactions with host flies. Furthermore, the complete genome sequencing of 12 species of Drosophila last year allowed the presented work to spill outside of melanogaster and include other Drosophila species.  相似文献   

12.
13.
Adaptive Immunity Restricts Replication of Novel Murine Astroviruses   总被引:1,自引:0,他引:1  
The mechanisms of astrovirus pathogenesis are largely unknown, in part due to a lack of a small-animal model of disease. Using shotgun sequencing and a custom analysis pipeline, we identified two novel astroviruses capable of infecting research mice, murine astrovirus (MuAstV) STL1 and STL2. Subsequent analysis revealed the presence of at least two additional viruses (MuAstV STL3 and STL4), suggestive of a diverse population of murine astroviruses in research mice. Complete genomic characterization and subsequent phylogenetic analysis showed that MuAstV STL1 to STL4 are members of the mamastrovirus genus and are likely members of a new mamastrovirus genogroup. Using Rag1−/− mice deficient in B and T cells, we demonstrate that adaptive immunity is required to control MuAstV infection. Furthermore, using Stat1−/− mice deficient in innate signaling, we demonstrate a role for the innate immune response in the control of MuAstV replication. Our results demonstrate that MuAstV STL permits the study of the mechanisms of astrovirus infection and host-pathogen interactions in a genetically manipulable small-animal model. Finally, we detected MuAstV in commercially available mice, suggesting that these viruses may be present in academic and commercial research mouse facilities, with possible implications for interpretation of data generated in current mouse models of disease.  相似文献   

14.
15.
Autism spectrum disorder (ASD) is a severe, complex neurodevelopmental disorder characterized by impairments in reciprocal social interaction and communication, and restricted and stereotyped patterns of interests and behaviors. Recent evidence has unveiled an important role for calcium (Ca2+) signaling in the pathogenesis of ASD. Post-mortem studies of autistic brains have pointed toward abnormalities in mitochondrial function as possible downstream consequences of altered Ca2+ signaling, abnormal synapse formation, and dysreactive immunity. SLC25A12, an ASD susceptibility gene, encodes the Ca2+-regulated mitochondrial aspartate–glutamate carrier, isoform 1 (AGC1). AGC1 is an important component of the malate/aspartate shuttle, a crucial system supporting oxidative phosphorylation and adenosine triphosphate (ATP) production. Here, we review the physiological roles of AGC1, its links to calcium homeostasis, and its involvement in autism pathogenesis.  相似文献   

16.

Background

Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs.

Methodology/Principal Findings

VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors.

Conclusions/Significance

This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.  相似文献   

17.
Reactive oxygen species (ROS) are critical in a broad spectrum of cellular processes including signaling, tumor progression, and innate immunity. The essential nature of ROS signaling in the immune systems of Drosophila and zebrafish has been demonstrated; however, the role of ROS, if any, in mammalian adaptive immune system development and function remains unknown. This work provides the first clear demonstration that thymus-specific elevation of mitochondrial superoxide (O2??) disrupts normal T cell development and impairs the function of the mammalian adaptive immune system. To assess the effect of elevated mitochondrial superoxide in the developing thymus, we used a T-cell-specific knockout of manganese superoxide dismutase (i.e., SOD2) and have thus established a murine model to examine the role of mitochondrial superoxide in T cell development. Conditional loss of SOD2 led to increased superoxide, apoptosis, and developmental defects in the T cell population, resulting in immunodeficiency and susceptibility to the influenza A virus H1N1. This phenotype was rescued with mitochondrially targeted superoxide-scavenging drugs. These findings demonstrate that loss of regulated levels of mitochondrial superoxide lead to aberrant T cell development and function, and further suggest that manipulations of mitochondrial superoxide levels may significantly alter clinical outcomes resulting from viral infection.  相似文献   

18.
The T help 1 (Th1) and Th2 cell classification have provided the framework for understanding CD4+ T cell biology and the interplay between innate and adaptive immunity for almost two decades. Recent studies have defined a previously unknown arm of the CD4+ T cell effector response, the Th17 lineage, which promises to change our understanding of immune regulation, immune pathogenesis and host defense. The factors that specify differentiation of IL‐17 producing effector T cells from naïve T cell precursors are being rapidly discovered and are providing insights into mechanisms by which signals from cells of the innate immune system guide alternative pathways of Th1, Th2, or Th17 development. In this review, we will focus on recent studies that have identified new subsets of Th cells, new insights regarding the induced generation and differentiation mechanisms of Th17 cells and immune regulatory effects. J. Cell. Physiol. 211: 273–278, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

19.
20.
Network robustness is a crucial property of the plant immune signaling network because pathogens are under a strong selection pressure to perturb plant network components to dampen plant immune responses. Nevertheless, modulation of network robustness is an area of network biology that has rarely been explored. While two modes of plant immunity, Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), extensively share signaling machinery, the network output is much more robust against perturbations during ETI than PTI, suggesting modulation of network robustness. Here, we report a molecular mechanism underlying the modulation of the network robustness in Arabidopsis thaliana. The salicylic acid (SA) signaling sector regulates a major portion of the plant immune response and is important in immunity against biotrophic and hemibiotrophic pathogens. In Arabidopsis, SA signaling was required for the proper regulation of the vast majority of SA-responsive genes during PTI. However, during ETI, regulation of most SA-responsive genes, including the canonical SA marker gene PR1, could be controlled by SA-independent mechanisms as well as by SA. The activation of the two immune-related MAPKs, MPK3 and MPK6, persisted for several hours during ETI but less than one hour during PTI. Sustained MAPK activation was sufficient to confer SA-independent regulation of most SA-responsive genes. Furthermore, the MPK3 and SA signaling sectors were compensatory to each other for inhibition of bacterial growth as well as for PR1 expression during ETI. These results indicate that the duration of the MAPK activation is a critical determinant for modulation of robustness of the immune signaling network. Our findings with the plant immune signaling network imply that the robustness level of a biological network can be modulated by the activities of network components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号