首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Circadian rhythms are daily cycles of physiology and behavior that are driven by an endogenous oscillator with a period of approximately one day. In mammals, the hypothalamic suprachiasmatic nuclei are our principal circadian oscillators which influences peripheral tissue clocks via endocrine, autonomic and behavioral cues, and other brain regions and most peripheral tissues contain circadian clocks as well. The circadian molecular machinery comprises a group of circadian genes, namely Clock, Bmal1, Per1, Per2, Per3, Cry1 and Cry2. These circadian genes drive endogenous oscillations which promote rhythmically expression of downstream genes and thereby physiological and behavioral processes. Disruptions in circadian homeostasis have pronounced impact on physiological functioning, overall health and disease susceptibility. This review introduces the general profile of circadian gene expression and tissue-specific circadian regulation, highlights the connection between the circadian rhythms and physiological processes, and discusses the role of circadian rhythms in human disease.  相似文献   

3.
4.
5.
Although it is well established that human adipose tissue (AT) shows circadian rhythmicity, published studies have been discussed as if tissues or systems showed only one or few circadian rhythms at a time. To provide an overall view of the internal temporal order of circadian rhythms in human AT including genes implicated in metabolic processes such as energy intake and expenditure, insulin resistance, adipocyte differentiation, dyslipidemia, and body fat distribution. Visceral and subcutaneous abdominal AT biopsies (n=6) were obtained from morbid obese women (BMI≥40 kg/m(2) ). To investigate rhythmic expression pattern, AT explants were cultured during 24-h and gene expression was analyzed at the following times: 08:00, 14:00, 20:00, 02:00 h using quantitative real-time PCR. Clock genes, glucocorticoid metabolism-related genes, leptin, adiponectin and their receptors were studied. Significant differences were found both in achrophases and relative-amplitude among genes (P<0.05). Amplitude of most genes rhythms was high (>30%). When interpreting the phase map of gene expression in both depots, data indicated that circadian rhythmicity of the genes studied followed a predictable physiological pattern, particularly for subcutaneous AT. Interesting are the relationships between adiponectin, leptin, and glucocorticoid metabolism-related genes circadian profiles. Their metabolic significance is discussed. Visceral AT behaved in a different way than subcutaneous for most of the genes studied. For every gene, protein mRNA levels fluctuated during the day in synchrony with its receptors. We have provided an overall view of the internal temporal order of circadian rhythms in human adipose tissue.  相似文献   

6.
7.
Peripheral cells from mammalian tissues, while perfectly capable of circadian rhythm generation, are not light sensitive and thus have to be entrained by nonphotic cues. Feeding time is the dominant zeitgeber for peripheral mammalian clocks: Daytime feeding of nocturnal laboratory rodents completely inverts the phase of circadian gene expression in many tissues, including liver, heart, kidney, and pancreas, but it has no effect on the SCN pacemaker. It is thus plausible that in intact animals, the SCN synchronizes peripheral docks primarily through temporal feeding patterns that are imposed through behavioral rest-activity cycles. In addition, body temperature rhythms, which are themselves dependent on both feeding patterns and rest-activity cycles, can sustain circadian, clock gene activity in vivo and in vitro. The SCN may also influence the phase of rhythmic gene expression in peripheral tissues through direct chemical pathways. In fact, many chemical signals induce circadian gene expression in tissue culture cells. Some of these have been shown to elicit phase shifts when injected into intact animals and are thus candidates for physiologically relevant timing cues. While the response of the SCN to light is strictly gated to respond only during the night, peripheral oscillators can be chemically phase shifted throughout the day. For example, injection of dexamethasone, a glucocorticoid receptor agonist, resets the phase of circadian liver gene expression during the entire 24-h day. Given the bewildering array of agents capable of influencing peripheral clocks, the identification of physiologically relevant agents used by the SCN to synchronize peripheral clocks will clearly be an arduous undertaking. Nevertheless, we feel that experimental systems by which this enticing problem can be tackled are now at hand.  相似文献   

8.
Does the circadian system regulate lactation?   总被引:1,自引:0,他引:1  
Environmental variables such as photoperiod, heat, stress, nutrition and other external factors have profound effects on quality and quantity of a dairy cow's milk. The way in which the environment interacts with genotype to impact milk production is unknown; however, evidence from our laboratory suggests that circadian clocks play a role. Daily and seasonal endocrine rhythms are coordinated in mammals by the master circadian clock in the hypothalamus. Peripheral clocks are distributed in every organ and coordinated by signals from the master clock. We and others have shown that there is a circadian clock in the mammary gland. Approximately 7% of the genes expressed during lactation had circadian patterns including core clock and metabolic genes. Amplitude changes occurred in the core mammary clock genes during the transition from pregnancy to lactation and were coordinated with changes in molecular clocks among multiple tissues. In vitro studies using a bovine mammary cell line showed that external stimulation synchronized mammary clocks, and expression of the core clock gene, BMAL1, was induced by lactogens. Female clock/clock mutant mice, which have disrupted circadian rhythms, have impaired mammary development and their offspring failed to thrive suggesting that the dam's milk production was not adequate enough to nourish their young. We envision that, in mammals, during the transition from pregnancy to lactation the master clock is modified by environmental and physiological cues that it receives, including photoperiod length. In turn, the master clock coordinates changes in endocrine milieu that signals peripheral tissues. In dairy cows, it is clear that changes in photoperiod during the dry period and/or during lactation influences milk production. We believe that the photoperiod effect on milk production is mediated, in part by the 'setting' of the master clock with light, which modifies peripheral circadian clocks including the mammary core clock and subsequently impacts milk yield and may impact milk composition.  相似文献   

9.
Even during “free-running” experiments, in which subjects lived in caves or cellars without any time cues, various circadian rhythms such as core body temperature and the sleep-wake cycle remained for a long time mutually synchronized in one group of subjects. In another group of subjects, or later in the same subjects, a number of unusually long sleep-wake cycles occurred while body temperature persisted in a near-24 hr rhythm. This has been termed “internal desynchronization” by Aschoff & Wever (1962) to emphasize the uncoupling of rhythms. Zulley (1980) and Czeisler et al. (1980) found that the duration of sleep depends regularly on the phase of the sleep onset in the body temperature rhythm, even in the apparently “random and irregular” sleep-wake pattern. The graph which plots, the sleep duration against the sleep onset phase is called sleep duration in this paper. We develop a quantitative, multi-oscillator model of human circadian system following Wever (1979) and Kronauer et al. (1982). Because the simplest model, which describes the state of each component oscillator by only one variable (ptlase) was adopted for each component oscillator, we can determine the intFraction between oscillators using sleep duration. It is found that a three-oscillator model can simulate several qualitative features of human circadian rhythms, such as an irregular free-running pattern and sleep duration. Moreover we find that the model reproduces the mysterious phenomenon of “forbidden wake up”, although we do not incorporate a priori any mechanism to explain it.  相似文献   

10.
The rabbit is particularly suitable for investigating the development of mammalian circadian function. Blind at birth, the pups are only visited by the mother to be nursed once every 24 h for about 3 min and so can be studied largely without maternal interference. They anticipate the mother's visit with increased behavioral arousal and with a rise in body temperature, both of which represent endogenous circadian rhythms. We now report that in newborn pups the suprachiasmatic nuclei of the hypothalamus (SCN; the main circadian pacemaker in mammals) show endogenous 24‐h rhythmicity in the expression of the clock genes Per1, Per2, and Bmal1. Pups nursed from postnatal days 1 to 7 and fasted to day 9 showed the same rhythms of clock gene expression as normally nursed controls. We also report that these rhythms are entrained by nursing. Pups killed on postnatal days 3–4 showed the same rhythms in gene expression as pups in the previous experiment, whereas littermates subsequently nursed from postnatal days 4 to 7 with nursing delayed 6 h showed a corresponding shift in the diurnal pattern of clock gene expression. Consistent with this, two groups of pups implanted with telemetric thermal sensors and nursed 6 h apart had daily patterns in body temperature synchronized with the two different nursing times. We conclude that the expression of clock genes associated with the newborn rabbit's circadian system is entrained by nonphotic cues accompanying nursing, the exact nature of which now needs to be clarified. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

11.
12.
13.
The circadian clock in the suprachiasmatic nucleus (SCN) maintains phase synchrony among circadian oscillators throughout the organism. Environmental light signals entrain the SCN, but timed, limited meal access acts as an overriding time cue for several peripheral tissues. We present data from a peripheral oscillator, the submaxillary salivary gland, in which temporal restriction of meals fails to entrain gene expression. In day-fed rats, submaxillary gland rhythms in expression of the clock gene Period1 (Per1) stay entrained to the light cycle (peaking at night) or become arrhythmic. This result suggests that feeding cues compete weakly with light cycle cues to set the phase of clock genes in this tissue. Since the submaxillary glands receive sympathetic innervation originating in the SCN, which relays light cycle cues to other oscillators, we attempted to assess the role of this neural input in phase control of submaxillary Per1 expression. We sympathetically denervated the submaxillary glands before subjecting rats to daytime-restricted feeding. After denervation, Per1 rhythms in all submaxillary glands shifted phase 180 degrees and entrained to daytime feeding. These results support the hypothesis that peripheral oscillators may receive multiple signals contributing to their phase of entrainment. Sympathetic efferents from the SCN can relay light cycle information, while other external cues may reach tissues through other efferents or nonneural pathways. In an abnormal, disruptive regimen such as daytime-restricted feeding, these different signals compete. Arrhythmicity may result if one signal is not clearly dominant. Elimination of the dominant signal (e.g., surgical sympathectomy) may allow a secondary signal to control phase.  相似文献   

14.
15.
16.
The mammalian Cone-rod homeobox (Crx) gene is a divergent member of the Otx gene family known to be involved in differentiation and survival of retinal photoreceptors and photoentrainment of circadian rhythms. Zebrafish have two genes in the Otx5/crx orthology class, and we previously showed that crx can transactivate rhodopsin expression in vitro, and that otx5 (orthodenticle-related gene), but not crx, regulates expression of circadian genes in the pineal. Here, we show that zebrafish crx does not regulate expression of opsins and other photoreceptor-specific genes in the pineal. We further show that crx is expressed in proliferating retinal progenitors and may be involved in patterning the early optic primordium and in promoting the differentiation of retinal progenitors, including photoreceptors. These results suggest novel functions for zebrafish crx during retinal specification and differentiation.  相似文献   

17.
18.
本文主要概述了目前拟南芥生物钟分子机制的研究进展。生物钟通过调控导引节律的相位来调节植物的生理活动。拟南芥生物钟由CCA1、LHY和TOC1 3个主要基因构成了一个稳定的负反馈环,来调节昼夜节律中各个基因如APRR/TOC1 5重奏的作用, 从而调控昼夜节律的相位。在开花的光周期调控中, 提出了外协和模型, 其中的关键基因是CO , 它与拟南芥的开花时间直接相关。  相似文献   

19.
Timing of circadian activities is controlled by rhythmic expression of clock genes in pacemaker neurons in the insect brain. Circadian behavior and clock gene expression can entrain to both thermoperiod and photoperiod but the availability of such cues, the organization of the brain, and the need for circadian behavior change dramatically during the course of insect metamorphosis. We asked whether photoperiod or thermoperiod entrains the clock during pupal and pharate adult stages by exposing flies to different combinations of thermoperiod and photoperiod and observing the effect on the timing of adult eclosion. This study used qRT-PCR to examine how entrainment and expression of circadian clock genes change during the course of development in the flesh fly, Sarcophaga crassipalpis. Thermoperiod entrains expression of period and controls the timing of adult eclosion, suggesting that the clock gene period may be upstream of the eclosion pathway. Rhythmic clock gene expression is evident in larvae, appears to cease during the early pharate adult stage, and resumes again by the time of adult eclosion. Our results indicate that both patterns of clock gene expression and the cues to which the clock entrains are dynamic and respond to different environmental signals at different developmental stages in S. crassipalpis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号