首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integral component of gastrulation in all organisms is epithelial to mesenchymal transition (EMT), a fundamental morphogenetic event through which epithelial cells transform into mesenchymal cells. The mesenchymal cells that arise from epithelial cells during gastrulation contribute to various tissue rudiments during subsequent development, including the notochord, somites, heart, gut, kidney, body wall and lining of the coelom. The process of gastrulation has been the subject of several hundred scientific papers. Despite all that has been written, it is likely that what we currently know about gastrulation is still considerably less than what remains to be learned. One critical remaining question that we consider here is how does gastrulation cease at the right place along the body axis, and at the right time? In this commentary, we focus on the molecular mechanism for the cessation of gastrulation, using the chick embryo as a model system.Key words: epithelial to mesenchymal transition (EMT), gastrulation, basal membrane, tail bud, ventral ectodermal ridge (VER), BMP, noggin, E-cadherin, chick embryo  相似文献   

2.
Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation.  相似文献   

3.
The sea anemone Nematostella vectensis has recently been established as a new model system for the understanding of the evolution of developmental processes. In particular, the evolutionary origin of gastrulation and its molecular regulation are the subject of intense investigation. However, while molecular data are rapidly accumulating, no detailed morphological data exist describing the process of gastrulation. Here, we carried out an ultrastructural study of different stages of gastrulation in Nematostella using transmission electron microscope and scanning electron microscopy techniques. We show that presumptive endodermal cells undergo a change in cell shape, reminiscent of the bottle cells known from vertebrates and several invertebrates. Presumptive endodermal cells organize into a field, the pre-endodermal plate, which undergoes invagination. In parallel, the endodermal cells decrease their apical cell contacts but remain loosely attached to each other. Hence, during early gastrulation they display an incomplete epithelial–mesenchymal transition (EMT). At a late stage of gastrulation, the cells eventually detach and fill the interior of the blastocoel as mesenchymal cells. This shows that gastrulation in Nematostella occurs by a combination of invagination and late immigration involving EMT. The comparison with molecular expression studies suggests that cells expressing snailA undergo EMT and become endodermal, whereas forkhead/brachyury expressing cells at the ectodermal margin of the blastopore retain their epithelial integrity throughout gastrulation.  相似文献   

4.
5.
Handedness of the vertebrate body plan critically depends on transient embryonic structures/organs that generate cilia-dependent leftward fluid flow within constrained extracellular environments. Although the function of ciliated organs in laterality determination has been extensively studied, how they are formed during embryogenesis is still poorly understood. Here we show that Kupffer's vesicle (KV), the zebrafish organ of laterality, arises from a surface epithelium previously thought to adopt exclusively extra-embryonic fates. Live multi-photon confocal imaging reveals that surface epithelial cells undergo Nodal/TGFbeta signalling-dependent ingression at the dorsal germ ring margin prior to gastrulation, to give rise to dorsal forerunner cells (DFCs), the precursors of KV. DFCs then migrate attached to the overlying surface epithelium and rearrange into rosette-like epithelial structures at the end of gastrulation. During early somitogenesis, these epithelial rosettes coalesce into a single rosette that differentiates into the KV with a ciliated lumen at its apical centre. Our results provide novel insights into the morphogenetic transformations that shape the laterality organ in zebrafish and suggest a conserved progenitor role of the surface epithelium during laterality organ formation in vertebrates.  相似文献   

6.
The conversion of an epithelial monolayer into a multilayered structure consisting of the three germ layers, ectoderm, mesoderm and endoderm, constitutes a conserved theme in the early development of animals. This is accomplished by morphogenetic movements that occur during gastrulation and serve not only to generate shape but also to ensure that cells receive the right signals at the right time. Recent evidence of the role of molecular interactions facilitated by cell movements in continuously defining the chick 'organizer' during gastrulation challenges the notion that it is a fixed cell population derived from an exclusive cell lineage.  相似文献   

7.
Urodeles begin gastrulation with much of their presumptive mesoderm in the superficial cell layer, all of which must move into the deep layers during development. We studied the morphogenesis of superficial mesoderm in the urodeles Ambystoma maculatum, Ambystoma mexicanum, and Taricha granulosa. In all three species, somitic, lateral, and ventral mesoderm move into the deep layer during gastrulation, ingressing through a "bilateral primitive streak" just inside the blastopore. The mesodermal epithelium appears to slide under the endodermal epithelium by a mechanism we term "subduction." Subduction removes the large expanse of superficial presumptive somitic and lateral-ventral mesoderm that initially separates the sub-blastoporal endoderm from the notochord, leaving the endoderm bounding the still epithelial notochord along the gastrocoel roof. Subduction may be a common feature of urodele gastrulation, differing in this regard from anurans. Subducting cells constrict their apices and become bottle-shaped as they approach the junction of the mesodermal and endodermal epithelia. Subducting bottle cells endocytose apical membrane and withdraw the tight junctional component cingulin from the contracting circumferential tight junctions. Either in conjunction with or immediately after subducting, the mesodermal cells undergo an epithelial-to-mesenchymal transition. The mechanism by which epithelial cells release their apical junctions to become mesenchymal, without disrupting the integrity of the epithelium, remains mysterious, but this system should prove useful in understanding this process in a developmental context.  相似文献   

8.
The method of separation of germ layers of rodent embryos by treating the embryonic shields with proteolytic enzymes and by microsurgery with the subsequent transplantation to ectopic sites has helped to gain a more detailed insight into what is going on during gastrulation in mammals. The space under the kidney capsule of adult animals seems to be the most appropriate ectopic site for transplantation of early postimplantation rat embryos or separated germ layers. After transplantation the grafts develop into teratomas whose complex histological structure reflects the initial developmental capacities of the graft. At the pre-primitive streak and the early primitive streak stages the primitive ectoderm differentiates into tissue derivatives of all three definitive germ layers, often in complex organotypic combinations. This is indirect evidence that all cells of the embryonic body originate from the primitive embryonic ectoderm. Halves of the primitive ectoderm obtained by a longitudinal or transverse cut through the egg cylinder give the same result. At the head fold stage the capacity for differentiation of the ectoderm is restricted to ectodermal and mesodermal derivatives. One day before gastrulation the isolated primitive ectoderm is not able to differentiate as renal isograft. The mesoderm isolated at the head fold stage and at later stages when its segmentation occurs, differentiates almost exclusively into the brown adipose tissue. The embryonic endoderm differentiates only in combination with the mesoderm. After transplantation the embryonic ectoderm loses its epithelial organization and breaks up into a mass of mesenchyme-like cells in which epithelial structures subsequently appear and differentiate in a way reminiscent of the reaggregation of cells in mixed cell suspension in vitro.  相似文献   

9.
Gastrulation is a pivotal event of mouse early embryogenesis. In telencephalin (TLCN)-Cre mice carrying the Cre recombinase gene inserted into the translational initiation site of the TLCN gene, Cre-mediated recombination took place at the postimplantation stage. To examine the role of RhoA signaling in early embryogenesis, we produced Rho36 mice carrying constitutively active RhoA(G14V) gene inducible by Cre recombinase and crossed with TLCN-Cre mice. In doubly transgenic embryos at the gastrulation stage, there appeared an abnormal bulge of cells protruded from the primitive streak region into the amniotic cavity. The bulged cell mass expressed the epiblast marker gene Oct3 and E-cadherin, but not the primitive streak marker gene T except for the basal portion. These results suggest that the conditional activation of RhoA signaling suppressed the epithelial to mesenchymal transition at the primitive streak during mouse gastrulation.  相似文献   

10.
Embryonic cells are classified into two types of cells by their morphology, epithelial and mesenchymal cells. During dynamic morphogenesis in development, epithelial cells often switch to mesenchymal by the process known as epithelial-to-mesenchymal transition (EMT). EMT is a central issue in cancer metastasis where epithelial-derived tumor cells are converted to mesenchymal with high mobility. Although many molecules have been identified to be involved in the EMT mostly by in vitro studies, in vivo model systems have been limited. We here established a novel model with which EMT can be analyzed directly in the living body. By an electroporation technique, we targeted a portion of the lateral plate mesoderm that forms epithelial cell sheets delineating the kidney region, called nephric coelomic epithelium (Neph-CE). Enhanced green fluorescent protein-electroporated Neph-CE retained the epithelial integrity without invading into the underling stroma (mesonephros). The Neph-CE transgenesis further allowed us to explore EMT inducers in vivo, and to find that Ras-Raf and RhoA signals were potent inducers. Live-imaging confocal microscopy revealed that during EMT processes cells started extending cellular protrusions toward the stroma, followed by translocation of their cell bodies. Furthermore, we established a long-term tracing of EMT-induced cells, which were dynamically relocated within the kidney stroma. The Neph-CE-transgenesis will open a way to study cellular and molecular mechanisms underlying EMT directly in actual body.  相似文献   

11.
Vertebrate gastrulation entails massive cell movements that establish and shape the germ layers. During gastrulation, the individual cell behaviors are strictly coordinated in time and space by various signaling pathways. These pathways instruct the cells about proliferation, shape, fate and migration into proper location. Convergence and extension (C&E) movements during vertebrate gastrulation play a major role in the shaping of the embryonic body. In vertebrates, the Wnt/Planar Cell Polarity (Wnt/PCP) pathway is a key regulator of C&E movements, essential for several polarized cell behaviors, including directed cell migration, and mediolateral and radial cell intercalation. However, the molecular mechanisms underlying the acquisition of Planar Cell Polarity by highly dynamic mesenchymal cells engaged in C&E are still not well understood. Here we review new evidence implicating the Wnt/PCP pathway in specific cell behaviors required for C&E during zebrafish gastrulation, in comparison to other vertebrates. We also discuss findings on the molecular regulation and the interaction of the Wnt/PCP pathway with other signaling pathways during gastrulation movements.  相似文献   

12.
Gastrulation is a developmental process to generate the mesoderm and endoderm from the ectoderm, of which the epithelial to mesenchymal transition (EMT) is generally considered to be a critical component. Due to increasing evidence for the involvement of EMT in cancer biology, a renewed interest is seen in using in vivo models, such as gastrulation, for studying molecular mechanisms underlying EMT. The intersection of EMT and gastrulation research promises novel mechanistic insight, but also creates some confusion. Here we discuss, from an embryological perspective, the involvement of EMT in mesoderm formation during gastrulation in triploblastic animals. Both gastrulation and EMT exhibit remarkable variations in different organisms, and no conserved role for EMT during gastrulation is evident. We propose that a ‘broken-down’ model, in which these two processes are considered to be a collective sum of separately regulated steps, may provide a better framework for studying molecular mechanisms of the EMT process in gastrulation, and in other developmental and pathological settings.  相似文献   

13.
Signalling between mesenchymal and epithelial cells has a profound influence on organ morphogenesis. However, less is known about the mechanical function of epithelial-mesenchymal interactions. Here, we describe two principal effects by which epithelia can regulate shape changes in mesenchymal cell aggregates. We propose that during formation of the embryonic body axis, the epithelial layer relieves surface minimizing tensions that would force cell aggregates into a spherical shape, and controls the serial arrangement of cell populations along the axis. The combined effects permit the tissue to deviate from a spherical form and to elongate.  相似文献   

14.
Multicellular organisms arise from the generation of different cell types and the organization of cells into tissues and organs. Cells of metazoa display two main phenotypes, the ancestral epithelial state and the recent mesenchymal derivative. Epithelial cells are usually stationary and reside in twodimensional sheets. By contrast mesenchymal cells are loosely packed and can move to new positions, thereby providing a vehicle for cell rearrangement, dispersal and novel cell-cell interactions. Transitions between epithelial and mesenchymal states drive key morphogenetic events in the early vertebrate embryo, including gastrulation, germ layer formation and somitogenesis. The cell behaviors and molecular mechanisms promoting transitions between these two states in the early mouse embryo are discussed in this review.Key words: mouse embryo, EMT, MET, morphogenesis, gastrulation, somitogenesis, epiblast, mesoderm, endoderm, primitive streak, paraxial mesoderm  相似文献   

15.
The sea urchin embryo is a good model system for studying the role of mechanical and cell-cell interactions during epithelial invagination, cell rearrangement and mesenchymal patterning in the gastrula. The mechanisms underlying the initial invagination of the archenteron have been surprisingly elusive; several possible mechanisms are discussed. In contrast to its initial invagination, the cellular basis for the elongation of the archenteron is better understood: both autonomous epithelial cell rearrangement and further rearrangement driven by secondary mesenchyme cells appear to be involved. Experiments indicate that patterning of freely migrating primary mesenchyme cells and secondary mesenchyme cells residing in the tip of the archenteron relies to a large extent on information resident in the ectoderm. Interactions between cells in the early embryo and later cell-cell interactions are both required for the establishment of ectodermal pattern information. Surprisingly, in the case of the oral ectoderm the fixation of pattern information does not occur until immediately prior to gastrulation.  相似文献   

16.
Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system?s relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa.  相似文献   

17.
During mouse gastrulation, cells in the primitive streak undergo epithelial–mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8–Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.  相似文献   

18.
19.
20.
Morphological and biochemical analyses have identified a set of proteins which together form a structure known as the adherens junction. Elegant experiments in tissue culture support the idea that adherens junctions play a key role in cell-cell adhesion and in organizing cells into epithelia. During normal embryonic development, cells quickly organize epithelia; these epithelial cells participate in many of the key morphogenetic movements of gastrulation. This prompted the hypothesis that adherens junctions ought to be critical for normal embryonic development. Drosophila Armadillo, the homologue of vertebrate beta-catenin, is a core component of the adherens junction protein complex and has been hypothesized to be essential for adherens junction function in vivo. We have used an intermediate mutant allele of armadillo, armadilloXP33, to test these hypotheses in Drosophila embryos. Adherens junctions cannot assemble in the absence of Armadillo, leading to dramatic defects in cell-cell adhesion. The epithelial cells of the embryo lose adhesion to each other, round up, and apparently become mesenchymal. Mutant cells also lose their normal cell polarity. These disruptions in the integrity of epithelia block the appropriate morphogenetic movements of gastrulation. These results provide the first demonstration of the effect of loss of adherens junctions on Drosophila embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号