首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Berry  M.  Hunter  A. S.  Duncan  A.  Lordan  J.  Kirvell  S.  Tsang  W.-L.  Butt  A. M. 《Brain Cell Biology》1998,27(12):915-937
The anterior medullary velum (AMV) of adult Wistar rats was lesioned in the midsagittal plane, transecting all decussating axons including those of the central projection of the IVth nerve. At selected times up to 200 days after transection, the degenerative and regenerative responses of axons and glia were analyzed using transmission and scanning electron microscopy and immunohistochemistry. In particular, both the capacity of oligodendrocytes to remyelinate regenerated fibers and the stability of the CNS/PNS junctional zone of the IVth nerve rootlet were documented. Transected central AMV axons exhibited four patterns of fiber regeneration in which fibers grew: rostrocaudally in the reactive paralesion neuropil (Group 1); randomly within the AMV (Group 2); into the ipsilateral IVth nerve rootlet, after turning at the lesion edge and growing recurrently through the old degenerated contralateral central trochlear nerve trajectory (Group 3); and ectopically through paralesion tears in the ependyma onto the surface of the IVth ventricle (Group 4). Group 1–3 axons regenerated unperturbed through degenerating central myelin, reactive astrocytes, oligodendrocytes, microglia, and large accumulations of hematogenous macrophages. Only Group 3 axons survived long term in significant numbers, and all became myelinated by oligodendrocytes, ultimately establishing thin sheaths with relatively normal nodal gaps and intersegmental myelin sheath lenghts. Schwann cells at the CNS/PNS junction of the IVth nerve rootlet did not invade the CNS, but astrocyte processes grew across the junction into the PNS portion of the IVth nerve. The basal lamina of the junctional glia limitans remained stable throughout the experimental period.  相似文献   

2.
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr−1 (1.9 Pg C yr−1), of which 10 Tg N yr−1 (0.2 Pg C yr−1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr−1 per 1°C degree climate warming) will add an important long-term climate forcing.  相似文献   

3.
Psychological stress has profound effects on gastrointestinal function, and investigations over the past few decades have examined the mechanisms by which neural and hormonal stress mediators act to modulate gut motility, epithelial barrier function and inflammatory states. With its cellular diversity and large commensal bacterial population, the intestinal mucosa and its overlying mucous environment constitute a highly interactive environment for eukaryotic host cells and prokaryotic bacteria. The elaboration of stress mediators, particularly norepinephrine, at this interface influences host cells engaged in mucosal protection and the bacteria which populate the mucosal surface and gut lumen. This review will address growing evidence that norepinephrine and, in some cases, other mediators of the adaptation to stress modulate mucosal interactions with enteric bacteria. Stress-mediated changes in this delicate interplay may shift the microbial colonization patterns on the mucosal surface and alter the susceptibility of the host to infection. Moreover, changes in host-microbe interactions in the digestive tract may also influence ongoing neural activity in stress-responsive brain areas.  相似文献   

4.
Members of the Tre-2/Bub2/Cdc16 (TBC) family of proteins are believed to function as GTPase-activating proteins (GAPs) for Rab GTPases, which play pivotal roles in intracellular membrane trafficking. Although membrane trafficking is fundamental to neuronal morphogenesis and function, the roles of TBC-family Rab GAPs have been poorly characterized in the nervous system. In this paper, we provide genetic evidence that Tbc1d15–17, the Drosophila homolog of mammalian Rab7-GAP TBC1d15, is required for normal presynaptic growth and postsynaptic organization at the neuromuscular junction (NMJ). A loss-of-function mutation in Tbc1d15–17 or its presynaptic knockdown leads to an increase in synaptic bouton number and NMJ length. Tbc1d15–17 mutants are also defective in the distribution of the postsynaptic scaffold Discs-large (Dlg) and in the level of the postsynaptic glutamate subunit GluRIIA. These postsynaptic phenotypes are recapitulated by postsynaptic knockdown of Tbc1d15–17. We also show that presynaptic overexpression of a constitutively active Rab7 mutant in a wild-type background causes a synaptic overgrowth phenotype resembling that of Tbc1d15–17 mutants, while a dominant-negative form of Rab7 has the opposite effect. Together, our findings establish a novel role for Tbc1d15–17 and its potential substrate Rab7 in regulating synaptic development.  相似文献   

5.
6.
The Drosophila Apaf-1 related killer forms an apoptosome in the intrinsic cell death pathway. In this study we show that Dark forms a single ring when initiator procaspases are bound. This Dark-Dronc complex cleaves DrICE efficiently; hence, a single ring represents the Drosophila apoptosome. We then determined the 3D structure of a double ring at ~6.9?? resolution and created a model of the apoptosome. Subunit interactions in the Dark complex are similar to those in Apaf-1 and CED-4 apoptosomes, but there are significant differences. In particular, Dark has "lost" a loop in the nucleotide-binding pocket, which opens a path for possible dATP exchange in the apoptosome. In addition, caspase recruitment domains (CARDs) form a crown on the central hub of the Dark apoptosome. This CARD geometry suggests that conformational changes will be required to form active Dark-Dronc complexes. When taken together, these data provide insights into apoptosome structure, function, and evolution.  相似文献   

7.
8.
《Plant Ecology & Diversity》2013,6(3-4):319-327
Background: As the climate warms, plant interactions between shrubs and conifer seedlings may affect migration of boreal trees into alpine areas; however these interactions have not been widely tested across conifer life stages.

Aims: Determine the role of shading by Betula glandulosa shrubs on early Picea mariana recruitment in the forest-tundra ecotone of the Mealy Mountains, Labrador (Canada).

Methods: Four shrub treatments were established with varying degrees of shade (unaltered, trimmed, cleared, shaded). Emergence and growth of P. mariana in treatment plots were compared to control plots without shrubs.

Results: Seedling emergence was facilitated; seedlings beneath shrubs emerged at greater levels (16% ± 5.1%) than in the control (0.5% ± 0.3%); however, evidence of facilitation post-emergence was weak, likely due to stronger interactions with seedbed species at this stage. Vertical growth of young seedlings was greatest in control and shaded plots, but needle production significantly decreased with increased shade suggesting that seedlings may compete with shrubs for light early in life.

Conclusions: Although facilitation has been previously implicated as an important mechanism in stressful environments, our study indicates that the early life stages of some conifers at the tree line are not strongly facilitated by shrubs as has been previously suggested for adults.  相似文献   

9.
10.
Salazar  Diego  Jaramillo  Alejandra  Marquis  Robert J. 《Oecologia》2016,181(4):1199-1208
Oecologia - Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant–herbivore interactions, it has been hypothesized that...  相似文献   

11.
12.
Biomolecular condensates (BMCs) can facilitate or inhibit diverse cellular functions. BMC formation is driven by noncovalent protein–protein, protein–RNA, and RNA–RNA interactions. Here, we focus on Tudor domain-containing proteins – such as survival motor neuron protein (SMN) – that contribute to BMC formation by binding to dimethylarginine (DMA) modifications on protein ligands. SMN is present in RNA-rich BMCs, and its absence causes spinal muscular atrophy (SMA). SMN’s Tudor domain forms cytoplasmic and nuclear BMCs, but its DMA ligands are largely unknown, highlighting open questions about the function of SMN. Moreover, DMA modification can alter intramolecular interactions and affect protein localization. Despite these emerging functions, the lack of direct methods of DMA detection remains an obstacle to understanding Tudor–DMA interactions in cells.  相似文献   

13.
14.
Sixteen Adh-negative mutants (induced by ethyl methanesulfonate) were examined for the presence of inactive alcohol dehydrogenase (ADH) protein. Four techniques were utilized in an effort to detect this protein: hybrid enzyme formation, intra-cistronic complentation, sodium dodecyl sulfate electrophoresis and antibody precipitation. Eleven of the sixteen negative strains showed evidence of inactive ADH protein and are preseumably mutations in the strutural element. These results are discussed in light of some recent models of gene organization in higher organisms.  相似文献   

15.
Apparent selection affecting starch gel electrophoretic alleles at the Esterase-2 locus of Drosophila buzzatii has been detected in laboratory and natural populations. Perturbation-reperturbation of allele frequencies in replicated laboratory populations attempts to test direct selective effects at the locus versus effects of linked loci. Sequential gel electrophoresis has identified more alleles within starch classes, and three of these alleles (within the a, b and c starch alleles) were used in cage population experiments. Allele a/1.00/1.00/1.00 was set up in 10 replicate populations with allele c/1.00/1.00/1.00, and in an independent 10 replicate populations with allele b/0.99/1.01/1.00. For each set, three reperturbations were done. Replicate populations generally showed similar patterns of allele frequency change and clear directionality: effects of selection, not drift. However, four populations deviated from their replicates, indicating dissipation of linkage disequilibrium. Estimates of pre-adult viability in the F2 of pair-wise crosses among 12 sequential gel electrophoretic alleles showed very variable modes of inheritance and relative viability fitnesses. Together with the diversity of patterns of allele frequency change in the cage populations, these results suggest a gene complex, with selection acting on an interacting set of loci which may include Esterase-2.  相似文献   

16.
Natural landscapes are both fragmented and heterogeneous, affecting the distribution of organisms, and their interactions. While predation in homogeneous environments increases the probability of population extinction, fragmentation/heterogeneity promotes coexistence and enhances community stability as shown by experimentation with animals and microorganisms, and supported by theory. Patch connectivity can modulate such effects but how microbial predatory interactions are affected by water-driven connectivity is unknown. In soil, patch habitability by microorganisms, and their connectivity depend upon the water saturation degree (SD). Here, using the obligate bacterial predator Bdellovibrio bacteriovorus, and a Burkholderia prey, we show that soil spatial heterogeneity profoundly affects predatory dynamics, enhancing long-term co-existence of predator and prey in a SD-threshold dependent-manner. However, as patches and connectors cannot be distinguished in these soil matrices, metapopulations cannot be invoked to explain the dynamics of increased persistence. Using a set of experiments combined with statistical and physical models we demonstrate and quantify how under full connectivity, predation is independent of water content but depends on soil microstructure characteristics. In contrast, the SD below which predation is largely impaired corresponds to a threshold below which the water network collapses and water connectivity breaks down, preventing the bacteria to move within the soil matrix.  相似文献   

17.
The biodiversity of tropical reefs is typified by the interaction between fishes and corals. Despite the importance of this ecological association, coevolutionary patterns between these two animal groups have yet to be critically evaluated. After compiling a large dataset on the prevalence of fish–coral interactions, we found that only a minority of fish species associate strongly with live corals (~5%). Furthermore, we reveal an evolutionary decoupling between fish and coral lineage trajectories. While fish lineages expanded in the Miocene, the bulk of coral diversification occurred in the Pliocene/Pleistocene. Most importantly, we found that coral association did not drive major differences in fish diversification. These results suggest that the Miocene fish diversification is more likely related to the development of novel, wave-resistant reef structures and their associated ecological opportunities. Macroevolutionary patterns in reef fishes are thus more strongly correlated with the expansion of reefs than with the corals themselves.  相似文献   

18.
19.
There is still an unmet need for simple methods to verify, visualize, and confirm protein–protein interactions in vivo. Here we describe a plasmid-based system to study such interactions. The system is based on the transmembrane domain (TMD) of the EF-hand Ca2+ sensor protein calneuron-2. We show that fusion of 28 amino acids that include the TMD of calneuron-2 to proteins of interest results in prominent localization on the cytoplasmic side of the Golgi. The recruitment of binding partners to the protein of interest fused to this sequence can then be easily visualized by fluorescent tags.  相似文献   

20.
Three sets of experiments have been conducted in order to evaluate the role of natural selection at the -Gpdh locus in Drosophila melanogaster. (1) The evolution of the F-allele frequency has been followed for many generations in 13 experimental populations having different genetic backgrounds. (2) Egg-to-adult viability has been measured in synthetic populations derived from one locality (Brouilly) and the results have been compared with those of a previous experiment involving a different local population (Tostes). (3) The effects of sodium octanoate on egg-to-adult viability have been measured on the genotypes FF, FS, SF, and SS. The results demonstrate that selection operates on a small block of genes which includes the -Gpdh locus.ERA 406 CNRS: Analyse et mécanismes de maintien du polymorphisme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号