首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During an infection, neutrophils are the first immune cells to arrive armed to clear the invading pathogen. In order to do so, neutrophils need to transmigrate from the peripheral blood through the endothelial layer toward the site of inflammation. This process is in most cases dependent on integrins, adhesion molecules present on all immune cells. These molecules are functionally regulated by “inside-out” signaling, where stimulus-induced signaling pathways act on the intracellular integrin tail to regulate the activity of the receptor on the outside. Both a change in conformation (affinity) and clustering (avidity/valency) of the receptors occurs and many factors have been linked to regulation of integrins on neutrophils. Control of integrin conformation and clustering is of pivotal importance for proper cell adhesion, migration, and bacterial clearance. Recently, gelsolin was found to be involved in β1-integrin affinity regulation and cell adhesion. Here, I summarize the role of neutrophil integrin regulation in the essential steps to reach the site of inflammation and clearance of bacterial pathogens.  相似文献   

2.
Neutrophil beta(2) integrins are activated by inside-out signaling regulating integrin affinity and valency; following ligand binding, beta(2) integrins trigger outside-in signals regulating cell functions. Addressing inside-out and outside-in signaling in hck(-/-)fgr(-/-) neutrophils, we found that Hck and Fgr do not regulate chemoattractant-induced activation of beta(2) integrin affinity. In fact, beta(2) integrin-mediated rapid adhesion, in static condition assays, and neutrophil adhesion to glass capillary tubes cocoated with ICAM-1, P-selectin, and a chemoattractant, under flow, were unaffected in hck(-/-)fgr(-/-) neutrophils. Additionally, examination of integrin affinity by soluble ICAM-1 binding assays and of beta(2) integrin clustering on the cell surface, showed that integrin activation did not require Hck and Fgr expression. However, after binding, hck(-/-)fgr(-/-) neutrophil spreading over beta(2) integrin ligands was reduced and they rapidly detached from the adhesive surface. Whether alterations in outside-in signaling affect sustained adhesion to the vascular endothelium in vivo was addressed by examining neutrophil adhesiveness to inflamed muscle venules. Intravital microscopy analysis allowed us to conclude that Hck and Fgr regulate neither the number of rolling cells nor rolling velocity in neutrophils. However, arrest of hck(-/-)fgr(-/-) neutrophils to >60 microm in diameter venules was reduced. Thus, Hck and Fgr play no role in chemoattractant-induced inside-out beta(2) integrin activation but regulate outside-in signaling-dependent sustained adhesion.  相似文献   

3.
整合素(integrin)是一类重要的跨膜黏附分子,在T细胞定向迁移到淋巴器官、感染或炎症部位以及T细胞与抗原呈递细胞(antigen presenting cell,APC)之间相互作用等过程中起重要作用。T细胞受到抗原或趋化因子等的刺激后,启动细胞内大量的信号传导分子,并形成"inside-out"信号通路,导致整合素构像的改变(conformation change)或促进整合素在细胞表面的聚集(integrinclustering),最终增强整合素的affinity或avidity,促进其与配体结合的能力,提高淋巴细胞间的黏附。近年来的研究已经鉴定出调控整合素活化的多个关键的信号分子及其形成的信号转导复合体。该文主要阐述T细胞受到抗原刺激后,由T细胞受体(T cell receptor,TCR)介导的"inside-out"信号通路中关键的信号分子如ADAP、SKAP-55、RapL、Rap1、Talin和Kindlins等如何与上下游信号分子协同作用,调控整合素LFA-1活化的分子机制。  相似文献   

4.
Leukocyte adhesion to the extracellular matrix (ECM) is tightly controlled and is vital for the immune response. Circulating lymphocytes leave the bloodstream and adhere to ECM components at sites of inflammation and lymphoid tissues. Mechanisms for regulating T-lymphocyte–ECM adhesion include (i) an alteration in the affinity of cell surface integrin receptors for their extracellular ligands and (ii) an alteration of events following postreceptor occupancy (e.g., cell spreading). Whereas H-Ras and R-Ras were previously shown to affect T-cell adhesion by altering the affinity state of the integrin receptors, no signaling molecule has been identified for the second mechanism. In this study, we demonstrated that expression of an activated mutant of Rac triggered dramatic spreading of T cells and their increased adhesion on immobilized fibronectin in an integrin-dependent manner. This effect was not mimicked by expression of activated mutant forms of Rho, Cdc42, H-Ras, or ARF6, indicating the unique role of Rac in this event. The Rac-induced spreading was accompanied by specific cytoskeletal rearrangements. Also, a clustering of integrins at sites of cell adhesion and at the peripheral edges of spread cells was observed. We demonstrate that expression of RacV12 did not alter the level of expression of cell surface integrins or the affinity state of the integrin receptors. Moreover, our results indicate that Rac plays a role in the regulation of T-cell adhesion by a mechanism involving cell spreading, rather than by altering the level of expression or the affinity of the integrin receptors. Furthermore, we show that the Rac-mediated signaling pathway leading to spreading of T lymphocytes did not require activation of c-Jun kinase, serum response factor, or pp70S6 kinase but appeared to involve a phospholipid kinase.  相似文献   

5.
T cells deficient in the Tec kinases Itk or Itk and Rlk exhibit defective TCR-stimulated proliferation, IL-2 production, and activation of phospholipase C-gamma. Evidence also implicates Tec kinases in actin cytoskeleton regulation, which is necessary for cell adhesion and formation of the immune synapse in T lymphocytes. In this study we show that Tec kinases are required for TCR-mediated up-regulation of adhesion via the LFA-1 integrin. We also demonstrate that the defect in adhesion is associated with defective clustering of LFA-1 and talin at the site of interaction of Rlk-/-Itk-/- and Itk-/- T cells with anti-TCR-coated beads. Defective recruitment of Vav1, protein kinase Ctheta, and Pyk2 was also observed in Rlk-/-Itk-/- and Itk-/- T cells. Stimulation with ICAM-2 in conjunction with anti-TCR-coated beads enhanced polarization of Vav1, protein kinase Ctheta, and Pyk2 in wild-type cells, demonstrating a role for integrins in potentiating the recruitment of signaling molecules in T cells. Increased recruitment of signaling molecules was most pronounced under conditions of low TCR stimulation. Under these suboptimal TCR stimulation conditions, ICAM-2 could also enhance the recruitment of signaling molecules in Itk-/-, but not Rlk-/-Itk-/- T cells. Thus, Tec kinases play key roles in regulating TCR-mediated polarization of integrins and signaling molecules to the site of TCR stimulation as well as the up-regulation of integrin adhesion.  相似文献   

6.
Integrins have been characterized extensively as adhesion receptors capable of transducing signals inside the cell. In myelomonocytic cells, integrin-mediated adhesive interactions regulate different selective cell responses, such as transmigration into the inflammatory site, cytokine secretion, production or reactive oxygen intermediates, degranulation and phagocytosis. In the last few years, great progress has been made in elucidating mechanisms of signal transduction by integrins in neutrophils and macrophages. This review summarises the current information on the role of integrins in regulating myelomonocytic cell functions and highlights the signalling pathways activated by integrin engagement in these cells. Also, exploiting the current knowledge of mechanisms of integrin signal transduction in other cell types, we propose a model to explain how integrins transduce signals inside neutrophils and macrophages, and how signaling pathways leading to regulation of selective cell functions may be coordinated.  相似文献   

7.
Integrins are the major cell adhesion molecules responsible for cell attachment to the extracellular matrix. The strength of integrin-mediated adhesion is controlled by the affinity of individual integrins (integrin activation) as well as by the number of integrins involved in such adhesion. The positive correlation between integrin activation and integrin clustering had been suggested previously, but several trials to induce integrin clustering by dimerization of the transmembrane domain or tail region of integrin α subunits failed to demonstrate any change in integrin activation. Here, using platelet integrin αIIbβ3 as a model system, we showed that there is intermolecular lateral interaction between integrins through the transmembrane domains, and this interaction can enhance the affinity state of integrins. In addition, when integrin clustering was induced through heteromeric lateral interactions using bimolecular fluorescence complementation, we could observe a significant increase in the number of active integrin molecules. Because the possibility of intermolecular interaction would be increased by a higher local concentration of integrins, we propose that integrin clustering can shift the equilibrium in favor of integrin activation.  相似文献   

8.
Inside-out integrin signalling.   总被引:26,自引:0,他引:26  
Integrins are expressed by virtually all cells and play key roles in a range of cellular processes. Changes in the integrin surface repertoire provide a means of altering the strength and ligand preferences of cell adhesion. Recent research has examined the affinity modulation of integrins, a rapid and versatile mechanism of cell adhesion regulation. Studies with a prototype, alpha IIb beta 3, indicate that intracellular events influence the conformation and ligand-binding affinity of the extracellular domain of integrins. This 'inside-out' signal transduction appears to be mediated through the integrin cytoplasmic domains. In addition, in some cases affinity modulation of integrins may be cell-type specific. The clarification of the mechanisms of integrin affinity modulation should help explain rapid changes in cell adhesion that occur during cell migration, aggregation and the cell cycle.  相似文献   

9.
The regulation of integrins expressed on leukocytes must be controlled precisely, and members of different integrin subfamilies have to act in concert to ensure the proper traffic of immune cells to sites of inflammation. The activation of β2 family integrins through the T cell receptor or by chemokines leads to the inactivation of very late antigen 4. The mechanism(s) of this cross-talk has not been known. We have now elucidated in detail how the signals are transmitted from leukocyte function-associated antigen 1 and show that, after its activation, the signaling involves specific phosphorylations of β2 integrin followed by interactions with cytoplasmic signaling proteins. This results in loss of β1 phosphorylation and a decrease in very late antigen 4 binding to its ligand vascular cell adhesion molecule 1. Our results show how a member of one integrin family regulates the activity of another integrin. This is important for the understanding of integrin-mediated processes.  相似文献   

10.
Adhesion of neutrophils to substrate is initiated by receptor-ligand interactions that induce outside-in signaling. Inside-out signals and lateral interactions between surface molecules further fine tune the response. This study investigates the role of CD66 in adhesion of neutrophils to fibronectin, using domain-mapped monoclonal antibodies to CD66. Neutrophils express CD66a, CD66b, and CD66c on their surface. The neutrophil surface molecules that bind to fibronectin are the alpha(4)beta(1) and alpha(5)beta(1) integrins. Our results show that the monoclonal antibody Kat4c, which recognizes the AB domain of CD66a, b, and c and the polyclonal anti-CD66 (anti-carcinoembryonic antigen), augments neutrophil adhesion to fibronectin, while monoclonal antibodies to the individual CD66 antigens, the Fab fragment of Kat4c, and a mixture of the individual antibodies to CD66 antigens were unable to affect the adhesion. Thus heterodimerization of CD66a, b, and c is required for promoting neutrophil adhesion to fibronectin. The increased adhesion in presence of Kat4c was inhibited by antibodies to the beta(1) and beta(2) integrins. Antibody ligation of CD66 antigens causes their clustering and concomitant coclustering of the alpha(M) subunit of the beta(2) integrin, thereby activating the integrin. The sugar alpha-methyl mannoside inhibited anti-CD66-mediated clustering, indicating that a carbohydrate-lectin interaction may exist between CD66 and alpha(M) integrin. It also reduced the increased adhesion of neutrophils to fibronectin, suggesting that beta(2) integrin activation precedes beta(1) integrin activation. Further, the anti-CD66-mediated adhesion to fibronectin is accompanied by increased localization of Src family kinases (lyn and hck) to the cytoskeleton and an increase in their kinase activity. These results suggest that crosslinking of CD66a, CD66b, and CD66c promotes activation of the beta(2) integrin and in turn an alteration in the affinity of the beta(1) integrin, which enhances the adhesion of neutrophils to fibronectin.  相似文献   

11.
Integrin adhesion receptors are essential for the normal function of most multicellular organisms, and defective integrin activation or integrin signaling is associated with an array of pathological conditions. Integrins are regulated by conformational changes, clustering, and trafficking, and regulatory mechanisms differ strongly between individual integrins and between cell types. Whereas integrins in circulating blood cells are activated by an inside-out-induced conformational change that favors high-affinity ligand binding, β1-integrins in adherent cells can be activated by force or clustering. In addition, endocytosis and recycling play an important role in the regulation of integrin turnover and integrin redistribution in adherent cells, especially during dynamic processes such as cell migration and invasion. Integrin trafficking is strongly regulated by their cytoplasmic tails, and the mechanisms are now being identified.  相似文献   

12.
The Ig-like receptor family member, PIR-B, has been shown to play an inhibitory role in receptor signaling within B cells, mast cells, and dendritic cells. As it has been implicated in integrin-mediated responses, we investigated the effect of loss of the PIR-B protein on integrin-mediated signaling in primary murine myeloid cells. The pir-b-/- neutrophils displayed enhanced respiratory burst, secondary granule release, and a hyperadhesive phenotype when plated on surfaces coated with either extracellular matrix proteins or cellular adhesion molecules in the presence or absence of the soluble inflammatory agonist TNF-alpha. The pir-b-/- and wild-type cells responded equivalently when stimulated with TNF-alpha in suspension, indicating that the hyperresponsive phenotype of the pir-b-/- cells during adhesion was due to enhanced integrin signaling. Both wild-type and pir-b-/- neutrophils expressed similar levels of integrin subunits. Primary bone marrow-derived macrophages from pir-b-/- mice were also hyperadhesive and spread more rapidly than wild-type cells following plating on surfaces that cross-linked cellular beta2 integrins. Biochemical analysis of macrophages from pir-b-/- mice revealed enhanced phosphorylation and activation of proteins involved in integrin signaling. These observations point to a nonredundant role for PIR-B in the regulation of leukocyte integrin signaling.  相似文献   

13.
T lymphocyte adhesion is required for multiple T cell functions, including migration to sites of inflammation and formation of immunological synapses with antigen presenting cells. T cells accomplish regulated adhesion by controlling the adhesive properties of integrins, a class of cell adhesion molecules consisting of heterodimeric pairs of transmembrane proteins that interact with target molecules on partner cells or extracellular matrix. The most prominent T cell integrin is lymphocyte function associated antigen (LFA)-1, composed of subunits αL and β2, whose target is the intracellular adhesion molecule (ICAM)-1. The ability of a T cell to control adhesion derives from the ability to regulate the affinity states of individual integrins. Inside-out signaling describes the process whereby signals inside a cell cause the external domains of integrins to assume an activated state. Much of our knowledge of these complex phenomena is based on mechanistic studies performed in simplified in vitro model systems. The T lymphocyte adhesion assay described here is an excellent tool that allows T cells to adhere to target molecules, under static conditions, and then utilizes a fluorescent plate reader to quantify adhesiveness. This assay has been useful in defining adhesion-stimulatory or inhibitory substances that act on lymphocytes, as well as characterizing the signaling events involved. Although described here for LFA-1 - ICAM-1 mediated adhesion; this assay can be readily adapted to allow for the study of other adhesive interactions (e.g. VLA-4 - fibronectin).  相似文献   

14.
A large number of bacterial pathogens targets cell adhesion molecules to establish an intimate contact with host cells and tissues. Members of the integrin, cadherin and immunoglobulin-related cell adhesion molecule (IgCAM) families are frequently recognized by specific bacterial surface proteins. Binding can trigger bacterial internalization following cytoskeletal rearrangements that are initiated upon receptor clustering. Moreover, signals emanating from the occupied receptors can result in cellular responses such as gene expression events that influence the phenotype of the infected cell. This review will address recent advances in our understanding of bacterial engagement of cellular adhesion molecules by discussing the binding of integrins by Staphylococcus aureus as well as the exploitation of IgCAMs by pathogenic Neisseria species.  相似文献   

15.
Integrins are a family of cell surface adhesion molecules which mediate cell adhesion and initiate signaling pathways that regulate cell spreading, migration, differentiation, and proliferation. TGF-beta is a multifunctional factor that induces a wide variety of cellular processes. In this study, we show that, TGF-beta 1 treatment enhanced the amount of alpha 5 beta 1 integrin on cell surface, the mRNA level of alpha 5 subunit, and subsequently stimulated cell adhesion onto a fibronectin (Fn) and laminin (Ln) matrix in SMMC-7721 cells. TGF-beta 1 could also promote cell migration. Furthermore, our results showed that TGF-beta1 treatment stimulated the tyrosine phosphorylation level of FAK, which can be activated by the ligation and clustering of integrins. PTEN can directly dephosphorylate FAK, and the results that TGF-beta 1 could down-regulate PTEN at protein level suggested that TGF-beta 1 might stimulate FAK phosphorylation through increasing integrin signaling and reducing dephosphorylation of FAK. These studies indicated that TGF-beta 1 and integrin-mediated signaling act synergistically to enhance cell adhesion and migration and affect downstream signaling molecules of hepatocarcinoma cells.  相似文献   

16.
The adhesive function of integrins is regulated through cytoplasmic signaling induced by several stimuli, whose process is designated "inside-out signaling". A large number of leukocytes are rapidly recruited to the sites of inflammation where they form an essential component of the response to infection, injury, autoimmune disorders, allergy, tumor invasion, atherosclerosis and so on. The recruitment of leukocytes into tissue is regulated by a sequence of interactions between the circulating leukocytes and the endothelial cells. Leukocyte integrins play a pivotal role in leukocyte adhesion to endothelial cells. During the process, the activation of integrins by various chemoattractants, especially chemokines, is essential for integrin-mediated adhesion in which a signal transduced to the leukocyte converts the functionally inactive integrin to an active adhesive configuration. We have proposed that H-Ras-sensitive activation of phosphoinositide 3 (PI 3)-kinase and subsequent profilin-mediated actin polymerization, can be involved in chemokine-induced integrin-dependent adhesion of T cells. The present review documents the relevance of cytoplasmic signaling and cytoskeletal assembly to integrin-mediated adhesion induced by chemoattractants including chemokines during inflammatory processes. In contrast, various adhesion molecules are known to transduce extracellular information into cytoplasm, which leads to T cell activation and cytokine production from the cells, designated "outside-in signaling". Such a bi-directional "cross-talking" among adhesion molecules and cytokines is most relevant to inflammatory processes by augmenting immune cell migration from circulation into inflamed tissue such as rheumatoid arthritis, tumor invasion, Beh?et's disease and atherosclerosis.  相似文献   

17.
Adhesiveness of integrins is up-regulated rapidly by a number of molecules, including growth factors, cytokines, chemokines, and other cell surface receptors, through a mechanism termed inside-out signaling. The inside-out signaling pathways are thought to alter integrin affinity for ligand, or cell surface distribution of integrin by diffusion/clustering. However, it remains to be clarified whether any physiologically relevant agonists induce a rapid change in the affinity of beta1 integrins and how ligand-binding affinity is modulated upon stimulation. In this study, we reported that affinity of beta1 integrin very late Ag-5 (VLA-5) for fibronectin was rapidly increased in bone marrow-derived mast cells by Ag cross-linking of FcepsilonRI. Ligand-binding affinity of VLA-5 was also augmented by receptor tyrosine kinases when the phospholipase Cgamma-1/protein kinase C pathway was inhibited. Wortmannin suppressed induction of the high affinity state VLA-5 in either case. Conversely, introduction of a constitutively active p110 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) increased the binding affinity for fibronectin. Failure of a constitutively active Akt to stimulate adhesion suggested that the affinity modulation mechanisms mediated by PI 3-kinase are distinct from the mechanisms to control growth and apoptosis by PI 3-kinase. Taken together, our findings demonstrated that the increase of affinity of VLA-5 was induced by physiologically relevant stimuli and PI 3-kinase was a critical affinity modulator of VLA-5.  相似文献   

18.
Integrins are essential adhesion receptors found on the surfaces of all metazoan cells. As regulators of cell migration and extracellular matrix assembly, these membrane-spanning heterodimers are critical for embryonic development, tissue repair and immune responses. Signals transmitted by integrins from outside to inside the cell promote cell survival and proliferation, but integrin affinity for extracellular ligands can also be controlled by intracellular cues. This bidirectional signaling is mediated by the short cytoplasmic tails of the two integrin subunits. Recent structural and functional studies of various integrin fragments and complexes between the cytoplasmic tails and intracellular proteins, such as talin, have provided new insight into the signaling processes centered around the tails, particularly inside-out integrin activation.  相似文献   

19.
Integrins are ubiquitous trans-membrane adhesion molecules that mediate the interaction of cells with the extracellular matrix (ECM). Integrins link cells to the ECM by interacting with the cell cytoskeleton. In cases such as leukocyte binding, integrins mediate cell-cell interactions and cell-ECM interactions. Recent research indicates that integrins also function as signal transduction receptors, triggering a number of intracellular signaling pathways that regulate cell behavior and development. A number of integrins are known to stimulate changes in intracellular calcium levels, resulting in integrin activation. Although changes in intracellular calcium regulate a vast number of cellular functions, this review will discuss the stimulation of calcium signaling by integrins and the role of intracellular calcium in the regulation of integrin-mediated adhesion.  相似文献   

20.
BACKGROUND: Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis, tumor cell metastasis, inflammation, the immune response, and hemostasis. A final step in integrin activation is the binding of talin, a cytoskeletal protein, to integrin beta cytoplasmic domains. Many different signaling molecules that regulate integrin affinity have been described, but a pathway that connects agonist stimulation to talin binding and activation has not been mapped. RESULTS: We used forward, reverse, and synthetic genetics to engineer and order an integrin activation pathway in cells expressing a prototype activatable integrin, platelet alphaIIbbeta3. Phorbol myristate acetate (PMA) activated alphaIIbbeta3 only after the increased expression of both recombinant protein kinase Calpha (PKCalpha) and talin to levels approximating those in platelets. Inhibition of Rap1 GTPase reduced alphaIIbbeta3 activation, whereas activated Rap1A(G12V) bypassed the requirement for PKC, establishing that Rap1 is downstream of PKC. Talin binding to integrins mediates Rap1-induced activation because Rap1A(G12V) failed to activate alphaIIbbeta3 in cells expressing integrin binding-defective talin (W359A). Rap1 activated integrins by forming an integrin-associated complex containing talin in combination with the Rap effector, RIAM. Furthermore, siRNA-mediated knockdown of RIAM blocked integrin activation. CONCLUSIONS: We have, for the first time, ordered a pathway from agonist stimulation to integrin activation and established the Rap1-induced formation of an "integrin activation complex," containing RIAM and talin, that binds to and activates the integrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号