首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous Σ1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.  相似文献   

2.
Summary The circadian rhythm phenotypes of eight chromosome aberrations with a breakpoint in the region of the per locus (3B1-2) were analyzed. Two duplications and five deficiencies with a 3B1-2 breakpoint produce either a wild-type or an arrhythmic clock phenotype while one translocation with a 3B1-2 breakpoint, T(1;4)JC43, produces locomotor-activity rhythms with either very-long period (31–39 h), rhythms that grade into arrhythmicity, or completely arrhythmic phenotypes. This is a unique phenotype that had not previously been observed for mutants at the per locus. An extensive complementation analysis of 3B1-2 chromosome aberrations and per mutant alleles provided no compelling evidence for genetic complexity at the per locus. This is in contrast to the report of Young and Judd (1978). Analysis of both the locomotor-activity and eclosion phenotypes of 3B1-2 chromosome aberrations did not uncover differences in the genetic control of these two rhythms. The clock phenotypes of 3B1-2 chromosome aberrations, the three per mutant alleles, and per + duplications suggest that mutations at the per locus shorten, lengthen, or eliminate periodicity by respectively increasing, decreasing, or eliminating per activity.  相似文献   

3.
Although nitric oxide (NO) is known to regulate root growth, the factor(s) modulating NO during this process have not yet been elucidated. Here, we identified Arabidopsis WD40‐REPEAT 5a (WDR5a) as a novel factor that functions in root growth by modulating NO accumulation. The wdr5a‐1 mutant accumulated less NO and produced longer roots than the wild type, whereas the WDR5a overexpression lines had the opposite phenotype. The role of NO was further supported by our observation that the NO donor sodium nitroprusside (SNP) and the NO scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO) rescued the root meristem growth phenotypes of the wdr5a‐1 and WDR5a overexpression lines, respectively. The regulation of root growth by WDR5a was found to involve auxin because the auxin levels were similar in SNP‐treated wdr5a‐1 and wild‐type roots, but higher in untreated wdr5a‐1 roots than in wild‐type roots. In addition, the wdr5a‐1 mutant had higher production and activity levels of the auxin biosynthetic enzyme TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1), in contrast to its reduced expression and activity in the WDR5a overexpression lines, and the increased root meristem growth in wdr5a‐1 was suppressed by treatment with l ‐kynurenine, which inhibits TAA1, as well as by mutating TAA1. WDR5a therefore functions in root meristem growth by maintaining NO homeostasis, and thus TAA1‐mediated auxin biosynthesis.  相似文献   

4.
5.
The ftsH gene, present in all eubacterial species, is anchored in the cytoplasmic membrane and contains an ATP- and a Zn-binding domain that are both part of a metalloprotease activity. The Bacillus subtilis ftsH is not essential, but null mutants exhibit a pleiotropic phenotype including filamentous growth; hypersensitivity towards heat and salt stress and a failure to sporulate. To find out whether one or the other functional domain is involved in these different phenotypes, point mutations were introduced into the coding region for both domains leading to a replacement of conserved amino acid residues. The mutant alleles were fused to a xylose-inducible promoter and integrated ectopically into two different strains, one expressing the wild-type ftsH allele and the other carrying a ftsH knockout. While none of the strains exhibited a growth defect in rich medium at 37°C, those strains expressing only the mutant alleles did not resume growth after heat or salt stress challenge. Furthermore, none of the mutant alleles promoted sporulation. While only those purified mutant FtsH proteins with an intact Walker A box exhibited ATPase activity, all of them failed to degrade -casein.  相似文献   

6.
Saccharomyces cerevisiae mutants which exhibit phenotypes (calcium resistance and vanadate sensitivity) similar to those of calcineurin-deficient mutants were isolated. The mutants were classified into four complementation groups (crv1,2,3 and4).crv1 was allelic tocnb1, a mutation in the regulatory subunit of calcineurin. The nucleotide sequences ofCRV2 andCRV3 genes which complemented thecrv2 andcrv3 mutations, respectively, are identical to those ofBCK1/SLK1/SKC1/SSP31 andMPK1/SLT2, respectively, which are both involved in the MAP kinase cascade. A calcineurin-deletion mutation (cnb1), which by itself has no detectable effect on growth and morphology, enhanced some phenotypes (slow growth and morphological abnormality) ofcrv2 andcrv3 mutants. These phenotypes ofcrv2 andcrv3 mutants were partially suppressed by Ca2+ or by overproduction of the calcineurin subunits (Cmp2 and Cnb1). Like the calcineurin-deficient mutant,crv2 andcrv3 mutants were defective in recovery from -factor-induced growth arrest. The defect in recovery of the cnb1 mutant was suppressed by overexpression ofMPK1. These results indicated that the calcineurin-mediated and the Mpk1- (Bck1-) mediated signaling pathways act in parallel to regulate functionally redundant cellular events important for growth.  相似文献   

7.
The mouse pink eyed dilution locus, p, located on chromosome 7, mediates coat and eye color. The human correlate of this gene may underlie some forms of tyrosinase-positive oculocutaneous albinism. Mutations at the p locus result in a reduction in pigmentation of the eyes and coat. Although most mutant p alleles (including all spontaneous mutations) affect only pigmentation, several mutant alleles (all radiation induced) are also associated with a variety of other phenotypes. We have focused our attention on the pun mutant allele, a spontaneous mutation, exhibiting one of the highest reversion frequencies reported for a mammalian mutation. Using a new technique, genome scanning, we have cloned fragments of genomic DNA from the p locus that are associated with a DNA duplication in pun DNA. These fragments can now be used to locate the p gene-encoding sequences and aid in the molecular characterization of complex mutant p alleles.  相似文献   

8.
The development and activity of the procambium and cambium, which ensure vascular tissue formation, is critical for overall plant architecture and growth. However, little is known about the molecular factors affecting the activity of vascular meristems and vascular tissue formation. Here, we show that the His kinase CYTOKININ-INDEPENDENT1 (CKI1) and the cytokinin receptors ARABIOPSIS HISTIDINE KINASE2 (AHK2) and AHK3 are important regulators of vascular tissue development in Arabidopsis thaliana shoots. Genetic modifications of CKI1 activity in Arabidopsis cause dysfunction of the two-component signaling pathway and defects in procambial cell maintenance. CKI1 overexpression in protoplasts leads to cytokinin-independent activation of the two-component phosphorelay, and intracellular domains are responsible for the cytokinin-independent activity of CKI1. CKI1 expression is observed in vascular tissues of inflorescence stems, and CKI1 forms homodimers both in vitro and in planta. Loss-of-function ahk2 and ahk3 mutants and plants with reduced levels of endogenous cytokinins show defects in procambium proliferation and an absence of secondary growth. CKI1 overexpression partially rescues ahk2 ahk3 phenotypes in vascular tissue, while the negative mutation CKI1H405Q further accentuates mutant phenotypes. These results indicate that the cytokinin-independent activity of CKI1 and cytokinin-induced AHK2 and AHK3 are important for vascular bundle formation in Arabidopsis.  相似文献   

9.
《Free radical research》2013,47(9):1100-1108
Abstract

Transforming growth factor β1 (TGF-β1) induces Mv1Lu cell senescence through inactivating glycogen synthase kinase 3 (GSK3), thereby inactivating complex IV and increasing intracellular ROS. In the present study, we identified protein kinase C delta (PKCδ) as an upstream regulator of GSK3 inactivation in this mechanism of TGF-β1-induced senescence. When Mv1Lu cells were exposed to TGF-β1, PKCδ phosphorylation simultaneously increased with GSK3 phosphorylation, and then AKT and ERK were phosphorylated. AKT phosphorylation and Smad signaling were independent of GSK3 phosphorylation, but ERK phosphorylation was downstream of GSK3 inactivation. TGF-β1-triggered GSK3 phosphorylation was blocked by inhibition of PKCδ, using its pharmacological inhibitor, Rottlerin, or overexpression of a dominant negative PKCδ mutant, but GSK3 inhibition with SB415286 did not alter PKCδ phosphorylation. Activation of PKCδ by PMA delayed cell growth and increased intracellular ROS level, but did not induce senescent phenotypes. In addition, overexpression of wild type or a constitutively active PKCδ mutant was enough to delay cell growth and decrease the mitochondrial oxygen consumption rate and complex IV activity, but weakly induce senescence. However, PMA treatment on Mv1Lu cells, which overexpress wild type and constitutively active PKCδ mutants, effectively induced senescence. These results indicate that PKCδ plays a key role in TGF-β1-induced senescence of Mv1Lu cells through the phosphorylation of GSK3, thereby triggering mitochondrial complex IV dysfunction and intracellular ROS generation.  相似文献   

10.
11.
Mitogen‐activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single‐mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double‐mutants are created from a large library of single‐mutant lines. Here we describe a new collection of 275 double‐mutant lines derived from a library of single‐mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high‐throughput double‐mutant generating pipeline using a system for growing Arabidopsis seedlings in 96‐well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double‐mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single‐mutant line. Seeds for this double‐mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double‐mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling.  相似文献   

12.
In this paper, we describe the cloning of the MS5 gene, a gene essential for male fertility in Arabidopsis . We previously defined the MS5 locus by characterizing an EMS-induced allele, ms5–1 . We identified a new allele of MS5 ( ms5–2 ) that was T-DNA-generated and used the T-DNA tag to clone the gene. Sequencing of mutant and wild-type alleles together with complementation of the ms5–1 mutant phenotype with a wild-type genomic clone confirmed the identity of the gene. Differences between the phenotypes of the two mutant alleles could be attributed to differences in mutant gene structure. The semi-dominant and dominant negative phenotypes of the ms5–2 mutant probably result from production of a truncated polypeptide. An unknown locus in Landsberg erecta can counteract the dominant negative phenotype of ms5–2 . Mutations in MS5 cause the formation of ‘polyads’– tetrads with more than four pools of chromosomes after male meiosis. Similarities between the MS5 sequence and that of a number of proteins were found; two that may be significant were with a synaptonemal complex protein and with a regulatory subunit of a cyclin-dependent kinase. The MS5 gene is a member of a small gene family highly conserved amongst plant species.  相似文献   

13.
14.
A gene for a putative two-component histidine kinase, which is homologous to os-1 from Neurospora crassa, was cloned and sequenced from the plant-pathogenic fungus Cochliobolus heterostrophus. The predicted protein possessed the conserved histidine kinase domain, the response regulator domain, and six tandem repeats of 92-amino-acids at the N-terminal end that are found in histidine kinases from other filamentous fungi. Introduction of the histidine kinase gene complemented the deficiency of the C. heterostrophus dic1 mutant, suggesting that the Dic1 gene product is a histidine kinase. Dic1 mutants are resistant to dicarboximide and phenylpyrrole fungicides, and they are sensitive to osmotic stress. We previously classified dic1 alleles into three types, based on their phenotypes. To explain the phenotypic differences among the dic1 mutant alleles, we cloned and sequenced the mutant dic1 genes and compared their sequences with that of the wild-type strain. Null mutants for Dic1, and mutants with a deletion or point mutation in the N-terminal repeat region, were highly sensitive to osmotic stress and highly resistant to both fungicides. A single amino acid change within the kinase domain or the regulator domain altered the sensitivity to osmotic stress and conferred moderate resistance to the fungicides. These results suggest that this predicted protein, especially its repeat region, has an important function in osmotic adaptation and fungicide resistance.Communicated by C. A. M. J. J. van den Hondel  相似文献   

15.
16.

Background

CAP/Capulet (Capt), Slingshot (Ssh) and Cofilin/Twinstar (Tsr) are actin-binding proteins that restrict actin polymerization. Previously, it was shown that low resolution analyses of loss-of-function mutations in capt, ssh and tsr all show ectopic F-actin accumulation in various Drosophila tissues. In contrast, RNAi depletion of capt, tsr and ssh in Drosophila S2 cells all affect actin-based lamella formation differently. Whether loss of these three related genes might cause the same effect in the same tissue remains unclear.

Methods

Loss-of-function mutant clones were generated using the MARCM or EGUF system whereas overexpression clones were generated using the Flip-out system. Immunostaining were then performed in eye imaginal discs with clones. FRAP was performed in cultured eye discs.

Results

Here, we compared their loss-of-function phenotype at single-cell resolution, using a sheet of epithelial cells in the Drosophila eye imaginal disc as a model system. Surprisingly, we found that capt and ssh, but not tsr, mutant cells within and posterior to the morphogenetic furrow (MF) shared similar phenotypes. The capt/ssh mutant cells possessed: (1) hexagonal cell packing with discontinuous adherens junctions; and (2) largely complementary accumulation of excessive phosphorylated myosin light chain (p-MLC) and F-actin rings at the apical cortex. We further showed that the capt/ssh mutant phenotypes depended on the inactivation of protein kinase A (PKA) and activation of Rho.

Conclusions

Although Capt, Ssh and Tsr were reported to negatively regulate actin polymerization, we found that Capt and Ssh, but not Tsr, share overlapping functions during eye morphogenesis.  相似文献   

17.
Summary Essential genes have been identified in the 1.5 map unit (m.u.)dpy-14-unc-29 region of chromosome I inCaenorhabditis elegans. Previous work defined nine genes with visible mutant phenotypes and nine genes with lethal mutant phenotypes. In this study, we have identified an additional 28 essential genes with 97 lethal mutations. The mutations were mapped using eleven duplication breakpoints, eight deficiencies and three-factor recombination experiments. Genes required for the early stages of development were common, with 24 of the 37 essential genes having mutant phenotypes arresting at an early larval stage. Most mutants of a gene have the same time of arrest; only four of the 20 essential genes with multiple alleles have alleles with different phenotypes. From the analysis of complementing alleles oflet-389, alleles with the same time-of-arrest phenotype were classified as either hypomorphic or amorphic. Mutants oflet-605, let-534 andunc-37 have both uncoordinated and lethal phenotypes, suggesting that these genes are required for the coordination of movement and for viability. The physical and genetic maps in thedpy-14 region were linked by positioning two N2/BO polymorphisms with respect to duplications in the region, and by localizing the right breakpoint of the deficiencyhDf8 on the physical map. Using cross-species hybridization toC. briggsae, ten regions of homology have been identified, eight of which are known to be coding regions, based on Northern analysis and/or the isolation of cDNA clones.  相似文献   

18.
Degradation of proteins via the ubiquitin system is an important step in many stress signaling pathways in plants. E3 ligases recognize ligand proteins and dictate the high specificity of protein degradation, and thus, play a pivotal role in ubiquitination. Here, we identified a gene, named Arabidopsis thaliana abscisic acid (ABA)‐insensitive RING protein 4 (AtAIRP4), which is induced by ABA and other stress treatments. AtAIRP4 encodes a cellular protein with a C3HC4‐RING finger domain in its C‐terminal side, which has in vitro E3 ligase activity. Loss of AtAIRP4 leads to a decrease in sensitivity of root elongation and stomatal closure to ABA, whereas overexpression of this gene in the T‐DNA insertion mutant atairp4 effectively recovered the ABA‐associated phenotypes. AtAIRP4 overexpression plants were hypersensitive to salt and osmotic stresses during seed germination, and showed drought avoidance compared with the wild‐type and atairp4 mutant plants. In addition, the expression levels of ABA‐ and drought‐induced marker genes in AtAIRP4 overexpression plants were markedly higher than those in the wild‐type and atairp4 mutant plants. Hence, these results indicate that AtAIRP4 may act as a positive regulator of ABA‐mediated drought avoidance and a negative regulator of salt tolerance in Arabidopsis.  相似文献   

19.
Saccharomyces cerevisiae mutants which exhibit phenotypes (calcium resistance and vanadate sensitivity) similar to those of calcineurin-deficient mutants were isolated. The mutants were classified into four complementation groups (crv1,2,3 and4).crv1 was allelic tocnb1, a mutation in the regulatory subunit of calcineurin. The nucleotide sequences ofCRV2 andCRV3 genes which complemented thecrv2 andcrv3 mutations, respectively, are identical to those ofBCK1/SLK1/SKC1/SSP31 andMPK1/SLT2, respectively, which are both involved in the MAP kinase cascade. A calcineurin-deletion mutation (Δcnb1), which by itself has no detectable effect on growth and morphology, enhanced some phenotypes (slow growth and morphological abnormality) ofcrv2 andcrv3 mutants. These phenotypes ofcrv2 andcrv3 mutants were partially suppressed by Ca2+ or by overproduction of the calcineurin subunits (Cmp2 and Cnb1). Like the calcineurin-deficient mutant,crv2 andcrv3 mutants were defective in recovery from α-factor-induced growth arrest. The defect in recovery of the Δcnb1 mutant was suppressed by overexpression ofMPK1. These results indicated that the calcineurin-mediated and the Mpk1- (Bck1-) mediated signaling pathways act in parallel to regulate functionally redundant cellular events important for growth.  相似文献   

20.
The Notch signaling pathway is an evolutionarily conserved mechanism that regulates many cell fate decisions. The deltex (dx) gene encodes an E3-ubiquitin ligase that binds to the intracellular domain of the Notch protein and regulates Notch signaling in a positive manner. However, it is still not clear how Dx does this. We generated a transgenic line, GMR-dx, which overexpresses dx in the developing Drosophila eye disc. The GMR-dx line showed a rough-eye phenotype, specific transformation of a photoreceptor cell (R3 to R4), and a rotation defect in the ommatidia. This phenotype was suppressed in combination with a dx loss-of-function mutant, indicating that it was due to a dx gain-of-function. We previously reported that overexpression of Dx results in the stabilization of Notch in late endosomes. Here, we found that three motifs in Dx, a region that binds to Notch, a proline-rich motif and a RING-H2 finger, were required for this stabilization, although the relative activity of these variants in this assay did not always correspond to the severity of the rough-eye phenotype. In an attempt to identify novel genes of the Notch pathway, we tested a large collection of chromosomal deficiencies for the ability to modify the eye phenotypes of the GMR-dx line. Twelve genomic segments that enhanced the rough-eye phenotype of GMR-dx were identified. To evaluate the specificity of these interactions, we then determined whether the deletions also interacted with the wing phenotypes associated with a loss-of-function mutation of dx, dx24. Analyses based on whole-genome information allowed us to conclude that we have identified two novel loci that probably include uncharacterized genes involved in Dx-mediated Notch signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号