首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATRMec1 phosphorylation-independent activation of Chk1 in vivo   总被引:1,自引:0,他引:1  
The conserved protein kinase Chk1 is a player in the defense against DNA damage and replication blocks. The current model is that after DNA damage or replication blocks, ATR(Mec1) phosphorylates Chk1 on the non-catalytic C-terminal domain. However, the mechanism of activation of Chk1 and the function of the Chk1 C terminus in vivo remains largely unknown. In this study we used an in vivo assay to examine the role of the C terminus of Chk1 in the response to DNA damage and replication blocks. The conserved ATR(Mec1) phosphorylation sites were essential for the checkpoint response to DNA damage and replication blocks in vivo; that is, that mutation of the sites caused lethality when DNA replication was stalled by hydroxyurea. Despite this, loss of the ATR(Mec1) phosphorylation sites did not change the kinase activity of Chk1 in vitro. Furthermore, a single amino acid substitution at an invariant leucine in a conserved domain of the non-catalytic C terminus restored viability to cells expressing the ATR(Mec1) phosphorylation site-mutated protein and relieved the requirement of an upstream mediator for Chk1 activation. Our findings show that a single amino acid substitution in the C terminus, which could lead to an allosteric change in Chk1, allows it to bypass the requirement of the conserved ATR(Mec1) phosphorylation sites for checkpoint function.  相似文献   

2.
ATR (ATM and Rad3-related) initiates a DNA damage signaling pathway in human cells upon DNA damage induced by UV and UV-mimetic agents and in response to inhibition of DNA replication. Genetic data with human cells and in vitro data with Xenopus egg extracts have led to the conclusion that the kinase activity of ATR toward the signal-transducing kinase Chk1 depends on the mediator protein Claspin. Here we have reconstituted a Claspin-mediated checkpoint system with purified human proteins. We find that the ATR-dependent phosphorylation of Chk1, but not p53, is strongly stimulated by Claspin. Similarly, DNA containing bulky base adducts stimulates ATR kinase activity, and Claspin acts synergistically with damaged DNA to increase phosphorylation of Chk1 by ATR. Mutations in putative phosphorylation sites in the Chk1-binding domain of Claspin abolish its ability to mediate ATR phosphorylation of Chk1. We also find that a fragment of Claspin containing the Chk1-binding domain together with a domain conserved in the yeast Mrc1 orthologs of Claspin is sufficient for its mediator activity. This in vitro system recapitulates essential components of the genetically defined ATR-signaling pathway.  相似文献   

3.
The Mus81-Eme1 structure-specific endonuclease is crucial for the processing of DNA recombination and late replication intermediates. In fission yeast, stimulation of Mus81-Eme1 in response to DNA damage at the G2/M transition relies on Cdc2CDK1 and DNA damage checkpoint-dependent phosphorylation of Eme1 and is critical for chromosome stability in absence of the Rqh1BLM helicase. Here we identify Rad3ATR checkpoint kinase consensus phosphorylation sites and two SUMO interacting motifs (SIM) within a short N-terminal domain of Eme1 that is required for cell survival in absence of Rqh1BLM. We show that direct phosphorylation of Eme1 by Rad3ATR is essential for catalytic stimulation of Mus81-Eme1. Chk1-mediated phosphorylation also contributes to the stimulation of Mus81-Eme1 when combined with phosphorylation of Eme1 by Rad3ATR. Both Rad3ATR- and Chk1-mediated phosphorylation of Eme1 as well as the SIMs are critical for cell fitness in absence of Rqh1BLM and abrogating bimodal phosphorylation of Eme1 along with mutating the SIMs is incompatible with rqh1Δ cell viability. Our findings unravel an elaborate regulatory network that relies on the poorly structured N-terminal domain of Eme1 and which is essential for the vital functions Mus81-Eme1 fulfills in absence of Rqh1BLM.  相似文献   

4.
Chk1 is a protein kinase that is the effector molecule in the G2 DNA damage checkpoint. Chk1 homologues have an N-terminal kinase domain, and a C-terminal domain of ~200 amino acids that contains activating phosphorylation sites for the ATM/R kinases, though the mechanism of activation remains unknown. Structural studies of the human Chk1 kinase domain show an open conformation; the activity of the kinase domain alone is substantially higher in vitro than full-length Chk1, and coimmunoprecipitation studies suggest the C-terminal domain may contain an autoinhibitory activity. However, we show that truncation of the C-terminal domain inactivates Chk1 in vivo. We identify additional mutations within the C-terminal domain that activate ectopically expressed Chk1 without the need for activating phosphorylation. When expressed from the endogenous locus, activated alleles show a temperature-sensitive loss of function, suggesting these mutations confer a semiactive state to the protein. Intragenic suppressors of these activated alleles cluster to regions in the catalytic domain on the face of the protein that interacts with substrate, suggesting these are the regions that interact with the C-terminal domain. Thus, rather than being an autoinhibitory domain, the C-terminus of Chk1 also contains domains critical for adopting an active configuration.  相似文献   

5.
Chk1 is an evolutionarily conserved protein kinase that regulates cell cycle progression in response to checkpoint activation. In this study, we demonstrated that agents that block DNA replication or cause certain forms of DNA damage induce the phosphorylation of human Chk1. The phosphorylated form of Chk1 possessed higher intrinsic protein kinase activity and eluted more quickly on gel filtration columns. Serines 317 and 345 were identified as sites of phosphorylation in vivo, and ATR (the ATM- and Rad3-related protein kinase) phosphorylated both of these sites in vitro. Furthermore, phosphorylation of Chk1 on serines 317 and 345 in vivo was ATR dependent. Mutants of Chk1 containing alanine in place of serines 317 and 345 were poorly activated in response to replication blocks or genotoxic stress in vivo, were poorly phosphorylated by ATR in vitro, and were not found in faster-eluting fractions by gel filtration. These findings demonstrate that the activation of Chk1 in response to replication blocks and certain forms of genotoxic stress involves phosphorylation of serines 317 and 345. In addition, this study implicates ATR as a direct upstream activator of Chk1 in human cells.  相似文献   

6.
The mediator protein Claspin is critical for the activation of the checkpoint kinase Chk1 during checkpoint responses to stalled replication forks. This function involves the Chk1-activating domain (CKAD) of Claspin, which undergoes phosphorylation on multiple conserved sites. These phosphorylations promote binding of Chk1 to Claspin and ensuing activation of Chk1 by ATR. However, despite the importance of this regulatory process, the kinase responsible for these phosphorylations has remained unknown. By using a multifaceted approach, we have found that casein kinase 1 gamma 1 (CK1γ1) carries out this function. CK1γ1 phosphorylates the CKAD of Claspin efficiently in vitro, and depletion of CK1γ1 from human cells by small interfering RNA (siRNA) results in dramatically diminished phosphorylation of Claspin. Consequently, the siRNA-treated cells display impaired activation of Chk1 and resultant checkpoint defects. These results indicate that CK1γ1 is a novel component of checkpoint responses that controls the interaction of a key checkpoint effector kinase with its cognate mediator protein.  相似文献   

7.
Never-in-mitosis A related protein kinase 1 (Nek1) is involved early in a DNA damage sensing/repair pathway. We have previously shown that cells without functional Nek1 fail to activate the more distal kinases Chk1 and Chk2 and fail to arrest properly at G1/S or M-phase checkpoints in response to DNA damage. As a consequence, foci of damaged DNA in Nek1 null cells persist long after the instigating insult, and Nek1 null cells develop unstable chromosomes at a rate much higher than identically cultured wild-type cells. Here we show that Nek1 functions independently of canonical DNA damage responses requiring the PI3 kinase-like proteins ATM and ATR. Chemical inhibitors of ATM/ATR or mutation of the genes that encode them fail to alter the kinase activity of Nek1 or its localization to nuclear foci of DNA damage. Moreover ATM and ATR activities, including the localization of the proteins to DNA damage sites and phosphorylation of early DNA damage response substrates, are intact in Nek1−/− murine cells and in human cells with Nek1 expression silenced by siRNA. Our results demonstrate that Nek1 is important for proper checkpoint control and characterize for the first time a DNA damage response that does not directly involve one of the known upstream mediator kinases, ATM or ATR.Key words: checkpoint control, DNA damage response, Nek1, ATM, ATR  相似文献   

8.
Chk1 protein kinase plays a critical role in checkpoints that restrict progression through the cell cycle if DNA replication has not been completed or DNA damage has been sustained. ATR-dependent activation of Chk1 is mediated by Claspin. Phosphorylation of Claspin at two sites (Thr916 and Ser945 in humans) in response to DNA replication arrest or DNA damage recruits Chk1 to Claspin. Chk1 is subsequently phosphorylated by ATR and fully activated to control cell cycle progression. We show that ablation of Chk1 by siRNA in human cells or its genetic deletion in chicken DT40 cells does not prevent phosphorylation of Claspin at Thr916 (Ser911 in chicken). Chk1, however, does play other roles, possibly indirect, in the phosphorylation of Claspin and its induction. These results demonstrate that phosphorylation of Claspin within the Chk1-binding domain is catalysed by an ATR-dependent kinase distinct from Chk1.  相似文献   

9.
DNA replication fork stalling poses a major threat to genome stability. This is counteracted in part by the intra-S phase checkpoint, which stabilizes arrested replication machinery, prevents cell-cycle progression and promotes DNA repair. The checkpoint kinase Mec1/ATR and RecQ helicase Sgs1/BLM contribute synergistically to fork maintenance on hydroxyurea (HU). Both enzymes interact with replication protein A (RPA). We identified and deleted the major interaction sites on Sgs1 for Rpa70, generating a mutant called sgs1-r1. In contrast to a helicase-dead mutant of Sgs1, sgs1-r1 did not significantly reduce recovery of DNA polymerase α at HU-arrested replication forks. However, the Sgs1 R1 domain is a target of Mec1 kinase, deletion of which compromises Rad53 activation on HU. Full activation of Rad53 is achieved through phosphorylation of the Sgs1 R1 domain by Mec1, which promotes Sgs1 binding to the FHA1 domain of Rad53 with high affinity. We propose that the recruitment of Rad53 by phosphorylated Sgs1 promotes the replication checkpoint response on HU. Loss of the R1 domain increases lethality selectively in cells lacking Mus81, Slx4, Slx5 or Slx8.  相似文献   

10.
Two large phosphatidylinositol 3-kinase–related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introducing substitution or truncation mutations. One substitution mutation, termed tel1-21, and a truncation mutation, called tel1-ΔC, did not significantly affect the expression level. The tel1-21 mutation impaired the cellular response to DNA damage and conferred moderate telomere maintenance defect. In contrast, the tel1-ΔC mutation behaved like a null mutation, conferring defects in both DNA damage response and telomere maintenance. Tel1-21 protein localized to DNA ends as effectively as wild-type Tel1 protein, whereas Tel1-ΔC protein failed. Introduction of a hyperactive TEL1-hy mutation suppressed the tel1-21 mutation but not the tel1-ΔC mutation. In vitro analyses revealed that both Tel1-21 and Tel1-ΔC proteins undergo efficient autophosphorylation but exhibit decreased kinase activities toward the exogenous substrate protein, Rad53. Our results show that the FATC domain of Tel1 mediates localization to DNA ends and contributes to phosphorylation of target proteins.  相似文献   

11.
The DNA damage and replication checkpoint kinase Mec1/ATR is a member of the PI3-kinase related kinases that function in response to various genotoxic stresses. The checkpoint clamp 9-1-1 (Rad9-Rad1-Hus1 in S. pombe and mammals; Ddc1-Rad17-Mec3 in S. cerevisiae) executes two distinct checkpoint functions. In S. cerevisiae, DNA-bound 9-1-1 directly activates Mec1 kinase activity, a function that has not been demonstrated in other organisms. A second, conserved activity of 9-1-1 is that of TopBP1/Cut5/Dpb11 recruitment to stalled replication sites; subsequent activation of Mec1/ATR is carried out by TopBP1/Cut5/Dpb11. Biochemical studies indicate that the mode of Mec1/ATR activation by S. cerevisiae 9-1-1 is analogous to activation by S. cerevisiae Dpb11 or by vertebrate TopBP1: activation is mediated by the intrinsically disordered C-terminal tail of each activator. The relative contributions made by multiple activators of Mec1/ATR are discussed.  相似文献   

12.
TopBP1 and Claspin are adaptor proteins that facilitate phosphorylation of Chk1 by the ATR kinase in response to genotoxic stress. Despite their established requirement for Chk1 activation, the exact way in which TopBP1 and Claspin control Chk1 phosphorylation remains unclear. We show that TopBP1 tightly colocalizes with ATR in distinct nuclear subcompartments generated by DNA damage. Although depletion of TopBP1 by RNA interference (RNAi) strongly impaired phosphorylation of multiple ATR targets, including Chk1, Nbs1, Smc1, and H2AX, it did not interfere with ATR assembly at the sites of DNA damage. These findings challenge the current concept of ATR activation by recruitment to damaged DNA. In contrast, Claspin, like Chk1, remained distributed throughout the nucleus both before and after DNA damage. Consistently, the RNAi-mediated ablation of Claspin selectively abrogated ATR's ability to phosphorylate Chk1 but not other ATR targets. In addition, downregulation of Claspin mimicked Chk1 inactivation by inducing spontaneous DNA damage. Finally, we show that TopBP1 is required for the DNA damage-induced interaction between Claspin and Chk1. Together, these results suggest that while TopBP1 is a general regulator of ATR, Claspin operates downstream of TopBP1 to selectively regulate the Chk1-controlled branch of the genotoxic stress response.  相似文献   

13.
The checkpoint kinase Chk1 undergoes ATR-mediated phosphorylation and activation in response to unreplicated DNA, but the precise mechanism of Chk1 activation is not known. In this study, we have analyzed the domain structure of Xenopus Chk1 and explored the mechanism of its activation by ATR-mediated phosphorylation. We show that the C-terminal region of Xenopus Chk1 contains an autoinhibitory region (AIR), which largely overlaps with a bipartite, unusually long ( approximately 85-amino acid) nuclear localization signal. When coexpressed in oocytes or embryos, the AIR can interact with and inhibit the kinase domain of Chk1, but not full-length Chk1, suggesting an autoinhibitory intramolecular interaction in the Chk1 molecule. If linked with the preceding ATR phosphorylation domain that has either phospho-mimic mutation or genuine phosphorylation, however, the AIR can no longer interact with or inhibit the kinase domain, suggesting a conformational change of the AIR by ATR-mediated phosphorylation. Even in full-length Chk1, such phospho-mimic mutation can interfere with the autoinhibitory intramolecular interaction, but only if this interaction is somewhat weakened by an additional mutation in the AIR. These results provide significant insights into the mechanism of Chk1 activation at the DNA replication checkpoint.  相似文献   

14.
Claspin is essential for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated or UV-damaged DNA. The activated form of Claspin contains two repeated phosphopeptide motifs that mediate its binding to Chk1. We show that these phosphopeptide motifs bind to Chk1 by means of its N-terminal kinase domain. The binding site on Chk1 involves a positively charged cluster of amino acids that contains lysine 54, arginine 129, threonine 153, and arginine 162. Mutagenesis of these residues strongly compromises the ability of Chk1 to interact with Claspin. These amino acids lie within regions of Chk1 that are involved in various aspects of its catalytic function. The predicted position on Chk1 of the phosphate group from Claspin corresponds to the location of activation-loop phosphorylation in various kinases. In addition, we have obtained evidence that the C-terminal regulatory domain of Chk1, which does not form a stable complex with Claspin under our assay conditions, nonetheless has some role in Claspin-dependent activation. Overall, these results indicate that Claspin docks with a phosphate-binding site in the catalytic domain of Chk1 during activation by ATR. Phosphorylated Claspin may mimic an activating phosphorylation of Chk1 during this process.  相似文献   

15.
In vertebrates, the checkpoint-regulatory kinase Chk1 mediates cell-cycle arrest in response to a block in DNA replication or to DNA damaged by ultraviolet radiation. The activation of Chk1 depends on both Claspin and the upstream regulatory kinase ATR. Claspin is a large acidic protein that becomes phosphorylated and binds to Chk1 in the presence of checkpoint-inducing DNA templates in Xenopus egg extracts. Here we identify, by means of deletion analysis, a region of Claspin of 57 amino acids that is both necessary and sufficient for binding to Xenopus Chk1. This Chk1-binding domain contains two highly conserved repeats of approximately ten amino acids. A serine residue in each repeat (serine 864 and serine 895) undergoes phosphorylation during a checkpoint response. A mutant of Claspin containing non-phosphorylatable amino acids at positions 864 and 895 cannot bind to Chk1 and is unable to mediate its activation. Our results indicate that two phosphopeptide motifs in Claspin are essential for checkpoint signalling.  相似文献   

16.
The checkpoint kinase Chk1 is an important mediator of cell cycle arrest following DNA damage. The 1.7 A resolution crystal structures of the human Chk1 kinase domain and its binary complex with an ATP analog has revealed an identical open kinase conformation. The secondary structure and side chain interactions stabilize the activation loop of Chk1 and enable kinase activity without phosphorylation of the catalytic domain. Molecular modeling of the interaction of a Cdc25C peptide with Chk1 has uncovered several conserved residues that are important for substrate selectivity. In addition, we found that the less conserved C-terminal region negatively impacts Chk1 kinase activity.  相似文献   

17.
18.
Claspin is required for the phosphorylation and activation of the Chk1 protein kinase by ATR during DNA replication and in response to DNA damage. This checkpoint pathway plays a critical role in the resistance of cells to genotoxic stress. Here, we show that human Claspin is cleaved by caspase-7 during the initiation of apoptosis. In cells, induction of DNA damage by etoposide at first produced rapid phosphorylation of Chk1 at a site targeted by ATR. Subsequently, etoposide caused activation of caspase-7, cleavage of Claspin, and dephosphorylation of Chk1. In apoptotic cell extracts, Claspin was cleaved by caspase-7 at a single aspartate residue into a large N-terminal fragment and a smaller C-terminal fragment that contain different functional domains. The large N-terminal fragment was heavily phosphorylated in a human cell-free system in response to double-stranded DNA oligonucleotides, and this fragment retained Chk1 binding activity. In contrast, the smaller C-terminal fragment did not bind Chk1, but did associate with DNA and inhibited the DNA-dependent phosphorylation of Chk1 associated with its activation. These results indicate that cleavage of Claspin by caspase-7 inactivates the Chk1 signaling pathway. This mechanism may regulate the balance between cell cycle arrest and induction of apoptosis during the response to genotoxic stress.  相似文献   

19.
In fission yeast, replication fork arrest activates the replication checkpoint effector kinase Cds1Chk2/Rad53 through the Rad3ATR/Mec1-Mrc1Claspin pathway. Hsk1, the Cdc7 homologue of fission yeast required for efficient initiation of DNA replication, is also required for Cds1 activation. Hsk1 kinase activity is required for induction and maintenance of Mrc1 hyperphosphorylation, which is induced by replication fork block and mediated by Rad3. Rad3 kinase activity does not change in an hsk1 temperature-sensitive mutant, and Hsk1 kinase activity is not affected by rad3 mutation. Hsk1 kinase vigorously phosphorylates Mrc1 in vitro, predominantly at non-SQ/TQ sites, but this phosphorylation does not seem to affect the Rad3 action on Mrc1. Interestingly, the replication stress-induced activation of Cds1 and hyperphosphorylation of Mrc1 is almost completely abrogated in an initiation-defective mutant of cdc45, but not in an mcm2 or polε mutant. The results suggest that Hsk1-mediated loading of Cdc45 onto replication origins may play important roles in replication stress-induced checkpoint.  相似文献   

20.
The DNA damage checkpoint pathways sense and respond to DNA damage to ensure genomic stability. The ATR kinase is a central regulator of one such pathway and phosphorylates a number of proteins that have roles in cell cycle progression and DNA repair. Using the Xenopus egg extract system, we have investigated regulation of the Rad1/Hus1/Rad9 complex. We show here that phosphorylation of Rad1 and Hus1 occurs in an ATR- and TopBP1-dependent manner on T5 of Rad1 and S219 and T223 of Hus1. Mutation of these sites has no effect on the phosphorylation of Chk1 by ATR. Interestingly, phosphorylation of Rad1 is independent of Claspin and the Rad9 carboxy terminus, both of which are required for Chk1 phosphorylation. These data suggest that an active ATR signaling complex exists in the absence of the carboxy terminus of Rad9 and that this carboxy-terminal domain may be a specific requirement for Chk1 phosphorylation and not necessary for all ATR-mediated signaling events. Thus, Rad1 phosphorylation provides an alternate and early readout for the study of ATR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号