首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast cells overexpressing the Ser/Thr protein phosphatase Ppz1 display a slow-growth phenotype. These cells recover slowly from alpha-factor or nutrient depletion-induced G1 arrest, showing a considerable delay in bud emergence as well as in the expression of the G1 cyclins Cln2 and Clb5. Therefore, an excess of the Ppz1 phosphatase interferes with the normal transition from G1 to S phase. The growth defect is rescued by overexpression of the HAL3/SIS2 gene, encoding a negative regulator of Ppz1. High-copy-number expression of HAL3/SIS2 has been reported to improve cell growth and to increase expression of G1 cyclins in sit4 phosphatase mutants. We show here that the described effects of HAL3/SIS2 on sit4 mutants are fully mediated by the Ppz1 phosphatase. The growth defect caused by overexpression of PPZ1 is intensified in strains with low G1 cyclin levels (such as bck2Delta or cln3Delta mutants), whereas mutation of PPZ1 rescues the synthetic lethal phenotype of sit4 cln3 mutants. These results reveal a role for Ppz1 as a regulatory component of the yeast cell cycle, reinforce the notion that Hal3/Sis2 serves as a negative modulator of the biological functions of Ppz1, and indicate that the Sit4 and Ppz1 Ser/Thr phosphatases play opposite roles in control of the G1/S transition.  相似文献   

2.
In the budding yeast Saccharomyces cerevisiae the protein phosphatase Sit4 and four associated proteins (Sap4, Sap155, Sap185, and Sap190) mediate G1 to S cell cycle progression and a number of signaling events controlled by the target of rapamycin TOR signaling cascade. Sit4 and the Sap proteins are ubiquitously conserved and their human orthologs, PP6 and three PP6R proteins, share significant sequence identity with their yeast counterparts. However, relatively little is known about the functions of the PP6 and PP6R proteins in mammalian cells. Here we demonstrate that the human PP6R proteins physically interact with Sit4 when expressed in yeast cells. Remarkably, expression of PP6R2 and PP6R3 but not expression of PP6R1 rescues the growth defect and rapamycin hypersensitivity of yeast cells lacking all four Saps, and these effects require Sit4. Moreover, PP6R2 and PP6R3 enhance cyclin G1 gene expression and DNA synthesis, and partially abrogate the G1 cell cycle delay and the budding defect of the yeast quadruple sap mutant strain. In contrast, the human PP6R proteins only modestly support nitrogen catabolite gene expression and are unable to restore normal levels of eIF2α phosphorylation in the quadruple sap mutant strain. These results illustrate that the human PP6-associated proteins are capable of providing distinct rapamycin-sensitive and Sit4-dependent Sap functions in the heterologous context of the yeast cell. We hypothesize that the human Saps may play analogous roles in mTORC1-PP6 signaling events in metazoans.  相似文献   

3.
Protein Ser/Thr phosphatases compose a PPP family that includes type-2 PP2A, PP4, and PP6, each with essential functions. The human PP6 gene rescues sit4(ts) mutants of Saccharomyces cerevisiae, and Sit4 phosphatase function depends on multiple Sit4-associated protein (SAP) subunits. We report here finding a SAPS sequence domain encoded in only a single gene each in Schizosaccharomyces pombe, Caenorhabditis elegans, and Drosophila but in three distinct open reading frames in Xenopus, Mus musculus, and Homo sapiens. The SAPS proteins are more divergent in sequence than PP6. Northern hybridization showed differential distribution of the human SAPS-related mRNA in multiple human tissues, named as PP6R1, PP6R2, and PP6R3. Antibodies were generated, distribution of endogenous PP6, PP6R1, PP6R2, and PP6R3 proteins was examined by immunoblotting, and the abundance of mRNA and protein in various tissues did not match. FLAG-tagged PP6R1 and PP6R2 expressed in HEK293 cells co-precipitated endogenous PP6, but not PP2A or PP4, showing specificity for recognition of phosphatases. The SAPS domain of PP6R1 alone was sufficient for association with PP6, and this predicts that conserved sequence motifs in the SAPS domain accounts for the specificity. FLAG-PP6R1 and FLAG-PP6R2 co-precipitated HA-IkappaBepsilon. Knockdown of PP6 or PP6R1 but not PP6R3 with siRNA significantly enhanced degradation of endogenous IkappaBepsilon in response to tumor necrosis factor-alpha. The results show SAPS domain subunits recruit substrates such as IkappaBepsilon as one way to determine specific functions for PP6.  相似文献   

4.
It is widely assumed that mitotic cyclins are rapidly degraded during anaphase, leading to the inactivation of the cell cycle-dependent protein kinase Cdc2 and allowing exit from mitosis. The proteolysis of mitotic cyclins is ubiquitin/26S proteasome mediated and requires the presence of the destruction box motif at the N terminus of the proteins. As a first attempt to study cyclin proteolysis during the plant cell cycle, we investigated the stability of fusion proteins in which the N-terminal domains of an A-type and a B-type tobacco mitotic cyclin were fused in frame with the chloramphenicol acetyltransferase (CAT ) reporter gene and constitutively expressed in transformed tobacco BY2 cells. For both cyclin types, the N-terminal domains led the chimeric cyclin-CAT fusion proteins to oscillate in a cell cycle-specific manner. Mutations within the destruction box abolished cell cycle-specific proteolysis. Although both fusion proteins were degraded after metaphase, cyclin A-CAT proteolysis was turned off during S phase, whereas that of cyclin B-CAT was turned off only during the late G2 phase. Thus, we demonstrated that mitotic cyclins in plants are subjected to post-translational control (e.g., proteolysis). Moreover, we showed that the proteasome inhibitor MG132 blocks BY2 cells during metaphase in a reversible way. During this mitotic arrest, both cyclin-CAT fusion proteins remained stable.  相似文献   

5.
We have previously shown that the tobacco cyclin B1;1 protein accumulates during the G2 phase of the cell cycle and is subsequently destroyed during mitosis. Here, we investigated the sub-cellular localisation of two different B1-types and one A3-type cyclin during the cell cycle by using confocal imaging and differential interference contrast (DIC) microscopy. The cyclins were visualised as GFP-tagged fusion proteins in living tobacco cells. Both B1-type cyclins were found in the cytoplasm and in the nucleus during G2 but when cells entered into prophase, both cyclins became associated with condensing chromatin and remained on chromosomes until metaphase. As cells exited metaphase, the B1-type cyclins became degraded, as shown by time-lapse images. A stable variant of cyclin B1;1-GFP fusion protein, in which the destruction box had been mutated, maintained its association with the nuclear material at later phases of mitosis such as anaphase and telophase. Furthermore, we demonstrated that cyclin B1;1 protein is stabilised in metaphase-arrested cells after microtubule destabilising drug treatments. In contrast to the B1-type cyclins, the cyclin A3;1 was found exclusively in the nucleus in interphase cells and disappeared earlier than the cyclin B1 proteins during mitosis.  相似文献   

6.
Cyclins are essential activators of cyclin-dependent kinases (Cdk) which, in turn, play pivotal roles in controlling transition through cell-cycle checkpoints. Cyclin G2 is a recently discovered second member of the G-type cyclins. The two members of the G-type cyclins, cyclin G1 and cyclin G2, share high structural similarity but their function remains to be defined. Here we characterize the structure of the mouse cyclin G2 gene by first cloning and sequencing the full-length mouse cyclin G2 cDNA. The cyclin G2 cDNA was used to isolate the cyclin G2 gene from a BAC library and to establish that the gene was transcribed from eight exons spanning a total of 8604 bp. The cyclin G2 gene was mapped by fluorescence in situ hybridization (FISH) to mouse chromosome 5E3.3.–F1.3. This region is syntenic to a region on human chromosome 4. The expression of cyclins G1 and G2 was examined in various tissues, but no correlation between expression patterns of the two genes was observed. However, during hepatic ontogenesis the cyclin G2 expression level decreased with age, whereas cyclin G1 expression increased. Transient expression of cyclin G2-green fluorescent protein (GFP) fusion protein in NIH3T3 cells showed that cyclin G2 is essentially a cytoplasmic protein, in contrast to the largely nuclear localization of cyclin G1. Our data suggest that, despite the close structural similarity between mouse cyclins G1 and G2, these proteins most likely perform distinct functions.  相似文献   

7.
Gene structure and chromosomal localization of mouse cyclin G2 (Ccng2)   总被引:18,自引:0,他引:18  
Cyclins are essential activators of cyclin-dependent kinases (Cdk) which, in turn, play pivotal roles in controlling transition through cell-cycle checkpoints. Cyclin G2 is a recently discovered second member of the G-type cyclins. The two members of the G-type cyclins, cyclin G1 and cyclin G2, share high structural similarity but their function remains to be defined. Here we characterize the structure of the mouse cyclin G2 gene by first cloning and sequencing the full-length mouse cyclin G2 cDNA. The cyclin G2 cDNA was used to isolate the cyclin G2 gene from a BAC library and to establish that the gene was transcribed from eight exons spanning a total of 8604 bp. The cyclin G2 gene was mapped by fluorescence in situ hybridization (FISH) to mouse chromosome 5E3.3.–F1.3. This region is syntenic to a region on human chromosome 4. The expression of cyclins G1 and G2 was examined in various tissues, but no correlation between expression patterns of the two genes was observed. However, during hepatic ontogenesis the cyclin G2 expression level decreased with age, whereas cyclin G1 expression increased. Transient expression of cyclin G2-green fluorescent protein (GFP) fusion protein in NIH3T3 cells showed that cyclin G2 is essentially a cytoplasmic protein, in contrast to the largely nuclear localization of cyclin G1. Our data suggest that, despite the close structural similarity between mouse cyclins G1 and G2, these proteins most likely perform distinct functions.  相似文献   

8.
Singer T  Haefner S  Hoffmann M  Fischer M  Ilyina J  Hilt W 《Genetics》2003,164(4):1305-1321
Using a synthetic lethality screen we found that the Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system. Yeast cells harboring sit4 mutations and an impaired proteasome (due to pre1-1 pre4-1 mutations) exhibited defective growth on minimal medium. Nearly identical synthetic effects were found when sit4 mutations were combined with defects of the Rad6/Ubc2- and Cdc34/Ubc3-dependent ubiquitination pathways. Under synthetic lethal conditions, sit4 pre or sit4 ubc mutants formed strongly enlarged unbudded cells with a DNA content of 1N, indicating a defect in the maintenance of cell integrity during starvation-induced G(1) arrest. Sit4-related synthetic effects could be cured by high osmotic pressure or by the addition of certain amino acids to the growth medium. These results suggest a concerted function of the Sit4 phosphatase and the ubiquitin-proteasome system in osmoregulation and in the sensing of nutrients. Further analysis showed that Sit4 is not a target of proteasome-dependent protein degradation. We could also show that Sit4 does not contribute to regulation of proteasome activity. These data suggest that both Sit4 phosphatase and the proteasome act on a common target protein.  相似文献   

9.
Sit4p is the catalytic subunit of a ceramide-activated PP2A-like phosphatase that regulates cell cycle, mitochondrial function, oxidative stress resistance and chronological lifespan in yeast. In this study, we show that hexokinase 2 (Hxk2p) is hyperphosphorylated in sit4Δ mutants grown in glucose medium by a Snf1p-independent mechanism and Hxk2p-S15A mutation suppresses phenotypes associated with SIT4 deletion, namely growth arrest at G1 phase, derepression of mitochondrial respiration, H2O2 resistance and lifespan extension. Consistently, the activation of Sit4p in isc1Δ mutants, which has been associated with premature aging, leads to Hxk2p hypophosphorylation, and the expression of Hxk2p-S15E increases the lifespan of isc1Δ cells. The overall results suggest that Hxk2p functions downstream of Sit4p in the control of cell cycle, mitochondrial function, oxidative stress resistance and chronological lifespan.  相似文献   

10.
11.
Kluyveromyces lactis zymocin, a heterotrimeric toxin complex, imposes a G1 cell cycle block on Saccharomyces cerevisiae that requires the toxin-target (TOT) function of holo-Elongator, a six-subunit histone acetylase. Here, we demonstrate that Elongator is a phospho-complex. Phosphorylation of its largest subunit Tot1 (Elp1) is supported by Kti11, an Elongator-interactor essential for zymocin action. Tot1 dephosphorylation depends on the Sit4 phosphatase and its associators Sap185 and Sap190. Zymocin-resistant cells lacking or overproducing Elongator-associator Tot4 (Kti12), respectively, abolish or intensify Tot1 phosphorylation. Excess Sit4.Sap190 antagonizes the latter scenario to reinstate zymocin sensitivity in multicopy TOT4 cells, suggesting physical competition between Sit4 and Tot4. Consistently, Sit4 and Tot4 mutually oppose Tot1 de-/phosphorylation, which is dispensable for integrity of holo-Elongator but crucial for the TOT-dependent G1 block by zymocin. Moreover, Sit4, Tot4, and Tot1 cofractionate, Sit4 is nucleocytoplasmically localized, and sit4Delta-nuclei retain Tot4. Together with the findings that sit4Delta and totDelta cells phenocopy protection against zymocin and the ceramide-induced G1 block, Sit4 is functionally linked to Elongator in cell cycle events targetable by antizymotics.  相似文献   

12.
Cell cycle progression in the budding yeast Saccharomyces cerevisiae is controlled by the Cdc28 protein kinase, which is sequentially activated by different sets of cyclins. Previous genetic analysis has revealed that two B-type cyclins, Clb5 and Clb6, have a positive role in DNA replication. In the present study, we show, in addition, that these cyclins negatively regulate G1- and G2-specific functions. The consequences of this negative regulation were most apparent in clb6 mutants, which had a shorter pre-Start G1 phase as well as a shorter G2 phase than congenic wild-type cells. As a consequence, clb6 mutants grew and proliferated more rapidly than wild-type cells. It was more difficult to assess the role of Clb5 in G1 and G2 by genetic analysis because of the extreme prolongation of S phase in clb5 mutants. Nevertheless, both Clb5 and Clb6 were shown to be responsible for down-regulation of the protein kinase activities associated with Cln2, a G1 cyclin, and Clb2, a mitotic cyclin, in vivo. These observations are consistent with the observed cell cycle phase accelerations associated with the clb6 mutant and are suggestive of similar functions for Clb5. Genetic evidence suggested that the inhibition of mitotic cyclin-dependent kinase activities was dependent on and possibly mediated through the CDC6 gene product. Thus, Clb5 and Clb6 may stabilize S phase by promoting DNA replication while inhibiting other cell cycle activities.  相似文献   

13.
Cyclin D-Cdk4/6 and cyclin A/E-Cdk2 are suggested to be involved in phosphorylation of the retinoblastoma protein (pRB) during the G1/S transition of the cell cycle. However, it is unclear why several Cdks are needed and how they are different from one another. We found that the consensus amino acid sequence for phosphorylation by cyclin D1-Cdk4 is different from S/T-P-X-K/R, which is the consensus sequence for phosphorylation by cyclin A/E-Cdk2 using various synthetic peptides as substrates. Cyclin D1-Cdk4 efficiently phosphorylated the G1 peptide, RPPTLS780PIPHIPR that contained a part of the sequence of pRB, while cyclins E-Cdk2 and A-Cdk2 did not. To determine the phosphorylation state of pRB in vitro and in vivo, we raised the specific antibody against phospho-Ser780 in pRB. We confirmed that cyclin D1-Cdk4, but not cyclin E-Cdk2, phosphorylated Ser780 in recombinant pRB. The Ser780 in pRB was phosphorylated in the G1 phase in a cell cycle-dependent manner. Furthermore, we found that pRB phosphorylated at Ser780 cannot bind to E2F-1 in vivo. Our data show that cyclin D1-Cdk4 and cyclin A/E Cdk2 phosphorylate different sites of pRB in vivo.  相似文献   

14.
Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins   总被引:52,自引:18,他引:34       下载免费PDF全文
《The Journal of cell biology》1993,120(6):1305-1320
Analysis of cell cycle regulation in the budding yeast Saccharomyces cerevisiae has shown that a central regulatory protein kinase, Cdc28, undergoes changes in activity through the cell cycle by associating with distinct groups of cyclins that accumulate at different times. The various cyclin/Cdc28 complexes control different aspects of cell cycle progression, including the commitment step known as START and mitosis. We found that altering the activity of Cdc28 had profound effects on morphogenesis during the yeast cell cycle. Our results suggest that activation of Cdc28 by G1 cyclins (Cln1, Cln2, or Cln3) in unbudded G1 cells triggers polarization of the cortical actin cytoskeleton to a specialized pre-bud site at one end of the cell, while activation of Cdc28 by mitotic cyclins (Clb1 or Clb2) in budded G2 cells causes depolarization of the cortical actin cytoskeleton and secretory apparatus. Inactivation of Cdc28 following cyclin destruction in mitosis triggers redistribution of cortical actin structures to the neck region for cytokinesis. In the case of pre-bud site assembly following START, we found that the actin rearrangement could be triggered by Cln/Cdc28 activation in the absence of de novo protein synthesis, suggesting that the kinase may directly phosphorylate substrates (such as actin-binding proteins) that regulate actin distribution in cells.  相似文献   

15.
16.
Cyclin protein behavior has not been systematically investigated in multinucleated cells with asynchronous mitoses. Cyclins are canonical oscillating cell cycle proteins, but it is unclear how fluctuating protein gradients can be established in multinucleated cells where nuclei in different stages of the division cycle share the cytoplasm. Previous work in A. gossypii, a filamentous fungus in which nuclei divide asynchronously in a common cytoplasm, demonstrated that one G1 and one B-type cyclin do not fluctuate in abundance across the division cycle. We have undertaken a comprehensive analysis of all G1 and B-type cyclins in A. gossypii to determine whether any of the cyclins show periodic abundance across the cell cycle and to examine whether cyclins exhibit functional redundancy in such a cellular environment. We localized all G1 and B-type cyclins and notably found that only AgClb5/6p varies in subcellular localization during the division cycle. AgClb5/6p is lost from nuclei at the meta-anaphase transition in a D-box-dependent manner. These data demonstrate that efficient nuclear autonomous protein degradation can occur within multinucleated cells residing in a common cytoplasm. We have shown that three of the five cyclins in A. gossypii are essential genes, indicating that there is minimal functional redundancy in this multinucleated system. In addition, we have identified a cyclin, AgClb3/4p, that is essential only for sporulation. We propose that the cohabitation of different cyclins in nuclei has led to enhanced substrate specificity and limited functional redundancy within classes of cyclins in multinucleated cells.  相似文献   

17.
We have recently identified a novel candidate oncogene, MCT-1, in the HUT 78 T-cell line. When overexpressed in NIH3T3 fibroblasts, the MCT-1 gene shortens the G1 phase of the cell cycle and promotes anchorage-independent growth. Progression of cells through a late G1 phase restriction point is regulated by G1 cyclins whose phosphorylation of the retinoblastoma gene product facilitates entry into S phase. Deregulated expression of G1 cyclins and their cognate cdk partners is often found in human tumor cells. In order to address the potential relationship of MCT-1 to cell cycle regulatory molecules, we analyzed the ability of MCT-1 overexpression to modulate cdk4 and cdk6 kinase activity in NIH3T3 fibroblasts constitutively overexpressing MCT-1. We observed an increase in the kinase activity of both cdk4 and cdk6 in asynchronously growing transformed cells compared with the parent cells. This increased kinase activity was accompanied by an elevated level of cyclin D1 protein and increased G1 cyclin/cdk complex formation. We also observed a correlation between increased protein levels of MCT-1 with cyclin D1 expression in a panel of lymphoid cell lines derived from T-cell malignancies. These results demonstrate that constitutive expression of MCT-1 is associated with deregulation of protein kinase-mediated G1 phase checkpoints.  相似文献   

18.
Properly regulated cyclin proteolysis is critical for normal cell cycle progression. A nine-amino acid peptide motif called the destruction box (D box) is present at the N terminus of the yeast mitotic cyclins. This short sequence is required for cyclin ubiquitination and subsequent proteolysis. The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 required for cyclin ubiquitination. We have tested the D box of five mitotic cyclins for interaction with six APC/C subunits. The APC/C subunit Cdc23, but not five other subunits tested, interacted by two-hybrid analysis with the N terminus of wild-type Clb2. None of these subunits interacted with the N termini of the cyclins Clb1, Clb3, or Clb5. Mutations in the D box sequences of Clb2 inhibited interaction with Cdc23 both in vivo and in vitro. Our results provide the first evidence for a direct interaction between an APC/C substrate (Clb2) and an APC/C subunit (Cdc23).  相似文献   

19.
The yeast cell cycle is regulated by a number of different cyclin-Cdc28 complexes, some of which orchestrate G1 events, and some of which orchestrate G2/M events. G1 cyclins lead to expression of G2 cyclins; the G2 cyclins then repress the G1 cyclins. G2 cyclin expression eventually leads to mitosis, which causes loss of the G2 cyclins, allowing derepression and reappearance of the G1 cyclins. These interactions between different classes of cyclins push the yeast cell cycle forward. Nutrients act through the G1 cyclins to stimulate division, while mating pheromones act through G1 cyclins to inhibit division.  相似文献   

20.
Maintaining accurate progression through the cell cycle requires the proper temporal expression and regulation of cyclins. The mammalian D-type cyclins promote G1-S transition. D1 cyclin protein stability is regulated through its ubiquitylation and resulting proteolysis catalyzed by the SCF E3 ubiquitin ligase complex containing the F-box protein, Fbx4. SCF E3-ligase-dependent ubiquitylation of D1 is trigged by an increase in the phosphorylation status of the cyclin. As inhibition of ubiquitin-dependent D1 degradation is seen in many human cancers, we set out to uncover how D-type cyclin phosphorylation is regulated. Here we show that in S. cerevisiae, a heterotrimeric protein phosphatase 2A (PP2ACdc55) containing the mammalian PPP2R2/PR55 B subunit ortholog Cdc55 regulates the stability of the G1 cyclin Cln2 by directly regulating its phosphorylation state. Cells lacking Cdc55 contain drastically reduced Cln2 levels caused by degradation due to cdk-dependent hyperphosphorylation, as a Cln2 mutant unable to be phosphorylated by the yeast cdk Cdc28 is highly stable in cdc55-null cells. Moreover, cdc55-null cells become inviable when the SCFGrr1 activity known to regulate Cln2 levels is eliminated or when Cln2 is overexpressed, indicating a critical relationship between SCF and PP2A functions in regulating cell cycle progression through modulation of G1-S cyclin degradation/stability. In sum, our results indicate that PP2A is absolutely required to maintain G1-S cyclin levels through modulating their phosphorylation status, an event necessary to properly transit through the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号