首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In multicellular organisms, constituent cells depend on extracellular signals for growth, proliferation, and survival. When cells are withdrawn from growth factors, they undergo apoptosis. Expression of constitutively active forms of the serine/threonine kinase Akt/PKB can prevent apoptosis upon growth factor withdrawal. Akt-mediated survival depends in part on the maintenance of glucose metabolism, suggesting that reduced glucose utilization contributes to growth factor withdrawal-induced death. However, it is unclear how restricting access to extracellular glucose alone would lead to the metabolic collapse observed after growth factor withdrawal. We report herein that growth factor withdrawal results in the loss of surface transporters for not only glucose but also amino acids, low-density lipoprotein, and iron. This coordinated decline in transporters and receptors for extracellular molecules creates a catabolic state characterized by atrophy and a decline in the mitochondrial membrane potential. Activated forms of Akt maintained these transporters on the cell surface in the absence of growth factor through an mTOR-dependent mechanism. The mTOR inhibitor rapamycin diminished Akt-mediated increases in cell size, mitochondrial membrane potential, and cell survival. These results suggest that growth factors control cellular growth and survival by regulating cellular access to extracellular nutrients in part by modulating the activity of Akt and mTOR.  相似文献   

2.
Glucose (Glc) metabolism protects cells against oxidant injury. By virtue of their central position in both Glc uptake and utilization, hexokinases (HKs) are ideally suited to contribute to these effects. Compatible with this hypothesis, endogenous HK activity correlates inversely with injury susceptibility in individual renal cell types. We recently reported that ectopic HK expression mimics the anti-apoptotic effects of growth factors in cultured fibroblasts, but anti-apoptotic roles for HKs have not been examined in other cell types or in a cellular injury model. We therefore evaluated HK overexpression for the ability to mitigate acute oxidant-induced cell death in an established epithelial cell culture injury model. In parallel, we examined salutary heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) treatment for the ability to 1) increase endogenous HK activity and 2) mimic the protective effects of ectopic HK expression. Both HK overexpression and HB-EGF increased Glc-phosphorylating capacity and metabolism, and these changes were associated with markedly reduced susceptibility to acute oxidant-induced apoptosis. The uniform Glc dependence of these effects suggests an important adaptive role for Glc metabolism, and for HK activity in particular, in the promotion of epithelial cell survival. These findings also support the contention that HKs contribute to the protective effects of growth factors.  相似文献   

3.
Apoptotic cell death following injury of vascular endothelium is assumed to play an important role in the pathogenesis of atherosclerosis. In this report, we demonstrate that high density lipoproteins (HDL), a major anti-atherogenic lipoprotein fraction, protect endothelial cells against growth factor deprivation-induced apoptosis. HDL blocked the mitochondrial pathway of apoptosis by inhibiting dissipation of mitochondrial potential (Deltapsi(m)), generation of reactive oxygen species, and release of cytochrome c into the cytoplasm. As a consequence, HDL prevented activation of caspases 9 and 3 and apoptotic alterations of the plasma membrane such as increase of permeability and translocation of phosphatidylserine. Treatment of endothelial cells with HDL induced activation of the protein kinase Akt, an ubiquitous transducer of anti-apoptotic signals, and led to phosphorylation of BAD, a major Akt substrate. Suppression of Akt activity both by wortmannin and LY-294002 or by a dominant negative Akt mutant abolished the anti-apoptotic effect of HDL. Two bioactive lysosphingolipids present in HDL particles, sphingosylphosphorylcholine and lysosulfatide, fully mimicked the survival effect of HDL by blocking the mitochondrial pathway of apoptosis and potently activating Akt. In conclusion, the present study identifies HDL as a carrier of endogenous endothelial survival factors and suggests that inhibition of endothelial apoptosis by HDL-associated lysosphingolipids may represent an important and novel aspect of the anti-atherogenic activity of HDL.  相似文献   

4.
5.
A comparison of Akt- and Bcl-x(L)-dependent cell survival was undertaken using interleukin-3-dependent FL5.12 cells. Expression of constitutively active Akt allows cells to survive for prolonged periods following growth factor withdrawal. This survival correlates with the expression level of activated Akt and is comparable in magnitude to the protection provided by the anti-apoptotic gene Bcl-x(L). Although both genes prevent cell death, Akt-protected cells can be distinguished from Bcl-x(L)-protected cells on the basis of increased glucose transporter expression, glycolytic activity, mitochondrial potential, and cell size. In addition, Akt-expressing cells require high levels of extracellular nutrients to support cell survival. In contrast, Bcl-x(L)-expressing cells deprived of interleukin-3 survive in a more vegetative state, in which the cells are smaller, have lower mitochondrial potential, reduced glycolytic activity, and are less dependent on extracellular nutrients. Thus, Akt and Bcl-x(L) suppress mitochondrion-initiated apoptosis by distinct mechanisms. Akt-mediated survival is dependent on promoting glycolysis and maintaining a physiologic mitochondrial potential. In contrast, Bcl-x(L) maintains mitochondrial integrity in the face of a reduced mitochondrial membrane potential, which develops as a result of the low glycolytic rate in growth factor-deprived cells.  相似文献   

6.
15-Hydroxyeicosatetraenoic acid (15-HETE), a metabolic product of arachidonic acid (AA), plays an important role in pulmonary vascular smooth muscle remodeling. Although its effects on the apoptotic responses are known, the underlying mechanisms are still poorly understood. Since Akt is a critical regulator of cell survival and vascular remodeling, there may be a crosstalk between 15-HETE anti-apoptotic process and PI3K/Akt survival effect in rat pulmonary arterial smooth muscle cells (PASMCs). To test this hypothesis, we studied the effect of 15-HETE on cell survival and apoptosis using Western blot, cell viability measurement, nuclear morphology determination, TUNEL assay and mitochondrial potential analysis. We found that activation of the PI3K/Akt signaling system was necessary for the 15-HETE to suppress PASMC apoptosis and improve cell survival. Our results indicated that 15-HETE inhibited the apoptotic responses of PASMCs, including morphological alterations, mitochondrial depolarization and the expression apoptosis-specific proteins. These effects were likely to be mediated through the activation of PI3K/Akt. Two downstream signal molecules of PI3K/Akt were identified. Both FasL and Bad were down-regulated by 15-HETE and 15-HETE phosphorylated Bad. These changes depended on the PI3K/Akt signaling pathway in PASMCs. Thus a signal transduction pathway was demonstrated which is necessary for the effects of 15-HETE in protection PASMCs from apoptosis.  相似文献   

7.
PKB and the mitochondria: AKTing on apoptosis   总被引:8,自引:0,他引:8  
Cellular homeostasis depends upon the strict regulation of responses to external stimuli, such as signalling cascades triggered by nutrients and growth factors, and upon cellular metabolism. One of the major molecules coordinating complex signalling pathways is protein kinase B (PKB), a serine/threonine kinase also known as Akt. The number of substrates known to be phosphorylated by PKB and its interacting partners, as well as our broad understanding of how PKB is implicated in responses to growth factors, metabolic pathways, proliferation, and cell death via apoptosis is constantly increasing. Activated by the insulin/growth factor-phosphatidylinositol 3-kinase (PI3K) cascade, PKB triggers events that promote cell survival and prevent apoptosis. It is also now widely accepted that mitochondria are not just suppliers of ATP, but that they participate in regulatory and signalling events, responding to multiple physiological inputs and genetic stresses, and regulate both cell proliferation and death. Thus, mitochondria are recognized as important players in apoptotic events and it is logical to predict some form of interplay with PKB. In this review, we will summarize mechanisms by which PKB mediates its anti-apoptotic activities in cells and survey recent developments in understanding mitochondrial dynamics and their role during apoptosis.  相似文献   

8.
Transcriptional effects of chronic Akt activation in the heart   总被引:11,自引:0,他引:11  
  相似文献   

9.
Akt signalling in health and disease   总被引:1,自引:0,他引:1  
Akt (also known as protein kinase B or PKB) comprises three closely related isoforms Akt1, Akt2 and Akt3 (or PKBα/β/γ respectively). We have a very good understanding of the mechanisms by which Akt isoforms are activated by growth factors and other extracellular stimuli as well as by oncogenic mutations in key upstream regulatory proteins including Ras, PI3-kinase subunits and PTEN. There are also an ever increasing number of Akt substrates being identified that play a role in the regulation of the diverse array of biological effects of activated Akt; this includes the regulation of cell proliferation, survival and metabolism. Dysregulation of Akt leads to diseases of major unmet medical need such as cancer, diabetes, cardiovascular and neurological diseases. As a result there has been substantial investment in the development of small molecular Akt inhibitors that act competitively with ATP or phospholipid binding, or allosterically. In this review we will briefly discuss our current understanding of how Akt isoforms are regulated, the substrate proteins they phosphorylate and how this integrates with the role of Akt in disease. We will furthermore discuss the types of Akt inhibitors that have been developed and are in clinical trials for human cancer, as well as speculate on potential on-target toxicities, such as disturbances of heart and vascular function, metabolism, memory and mood, which should be monitored very carefully during clinical trial.  相似文献   

10.
11.
Activation of glucagon-like peptide-2 receptor (GLP-2R) signaling promotes expansion of the mucosal epithelium indirectly via activation of growth and anti-apoptotic pathways; however, the cellular mechanisms coupling direct GLP-2R activation to cell survival remain poorly understood. We now demonstrate that GLP-2, in a cycloheximide-insensitive manner, enhanced survival in baby hamster kidney cells stably transfected with the rat GLP-2R; reduced mitochondrial cytochrome c efflux; and attenuated the caspase-dependent cleavage of Akt, poly(ADP-ribose) polymerase, and beta-catenin following inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002. The prosurvival effects of GLP-2 on LY294002-induced cell death were independent of Akt, p90(Rsk), or p70 S6 kinase activation; were mimicked by forskolin; and were abrogated by inhibition of protein kinase A (PKA) activity. GLP-2 inhibited activation of glycogen synthase kinase-3 (GSK-3) through phosphorylation at Ser(21) in GSK-3alpha and at Ser(9) in GSK-3beta in a PI3K-independent, PKA-dependent manner. GLP-2 reduced LY294002-induced mitochondrial association of endogenous Bad and Bax and stimulated phosphorylation of a transfected Bad fusion protein at Ser(155) in a PI3K-independent, but H89-sensitive manner, a modification known to suppress Bad pro-apoptotic activity. These results suggest that GLP-2R signaling enhances cell survival independently of PI3K/Akt by inhibiting the activity of a subset of pro-apoptotic downstream targets of Akt in a PKA-dependent manner.  相似文献   

12.
13.
14.
15.
16.
Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.  相似文献   

17.
18.
Polypeptide growth factors activate specific transmembrane receptors, leading to the induction of multiple intracellular signal transduction pathways which control cell function and fate. Recent studies have shown that growth factors promote cell survival by stimulating the serine-threonine protein kinase Akt, which appears to function primarily as an antiapoptotic agent by inactivating death-promoting molecules. We previously established C2 muscle cell lines lacking endogenous expression of insulin-like growth factor II (IGF-II). These cells underwent apoptotic death in low-serum differentiation medium but could be maintained as viable myoblasts by IGF analogues that activated the IGF-I receptor or by unrelated growth factors such as platelet-derived growth factor BB (PDGF-BB). Here we show that IGF-I promotes muscle cell survival through Akt-mediated induction of the cyclin-dependent kinase inhibitor p21. Treatment of myoblasts with IGF-I or transfection with an inducible Akt maintained muscle cell survival and enhanced production of p21, and ectopic expression of p21 was able to sustain viability in the absence of growth factors. Blocking of p21 protein accumulation through a specific p21 antisense cDNA prevented survival regulated by IGF-I or Akt but did not block muscle cell viability mediated by PDGF-BB. Our results define Akt as an intermediate and p21 as a critical effector of an IGF-controlled myoblast survival pathway that is active during early myogenic differentiation and show that growth factors are able to maintain cell viability by inducing expression of pro-survival molecules.  相似文献   

19.
20.
Under normal cell physiology, a balance between cell survival and apoptosis is crucial for homeostasis. Many studies have demonstrated that apoptosis is modulated by cell survival stimuli. Active Akt, a common mediator of cell survival signals, has been shown to inhibit apoptosis by attenuating activity of pro-apoptotic factors Bad and caspase-9. However, the anti-apoptotic mechanisms mediated by various cell survival signals are poorly understood. Human prostate cancer LNCaP cells, known to contain constitutively activated Akt as a result of a frame-shift mutation in PTEN, an inhibitor of PI-3K/Akt pathway, were observed to be completely resistant to TRAIL-induced apoptosis. In agreement with the known action of Akt, blockade of the PI-3K/Akt pathway rendered LNCaP cells highly susceptible to TRAIL. Importantly, active PI-3K/Akt prevented processing/activation of caspase-3, a phenomenon associated with the function of inhibitor of apoptosis proteins (IAPs). In fact, inhibition of PI-3K activity using Wortmannin significantly decreased the protein levels of IAPs, concomitantly promoting processing/activation of caspase-3 and TRAIL-induced apoptosis. My data indicate that in addition to blocking Bad and caspase-9 through Akt, PI-3K also inhibits caspase-3 through up-regulating IAPs, thereby attenuates apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号