首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Following the widespread use of genome-wide association studies (GWAS), focus is turning towards identification of causal variants rather than simply genetic markers of diseases and traits. As a step towards a high-throughput method to identify genome-wide, non-coding, functional regulatory variants, we describe the technique of allele-specific FAIRE, utilising large-scale genotyping technology (FAIRE-gen) to determine allelic effects on chromatin accessibility and regulatory potential. FAIRE-gen was explored using lymphoblastoid cells and the 50,000 SNP Illumina CVD BeadChip. The technique identified an allele-specific regulatory polymorphism within NR1H3 (coding for LXR-α), rs7120118, coinciding with a previously GWAS-identified SNP for HDL-C levels. This finding was confirmed using FAIRE-gen with the 200,000 SNP Illumina Metabochip and verified with the established method of TaqMan allelic discrimination. Examination of this SNP in two prospective Caucasian cohorts comprising 15,000 individuals confirmed the association with HDL-C levels (combined beta = 0.016; p = 0.0006), and analysis of gene expression identified an allelic association with LXR-α expression in heart tissue. Using increasingly comprehensive genotyping chips and distinct tissues for examination, FAIRE-gen has the potential to aid the identification of many causal SNPs associated with disease from GWAS.  相似文献   

5.
6.
Late-onset Alzheimer''s disease (LOAD) is a multifactorial disorder with over twenty loci associated with disease risk. Given the number of genome-wide significant variants that fall outside of coding regions, it is possible that some of these variants alter some function of gene expression rather than tagging coding variants that alter protein structure and/or function. RegulomeDB is a database that annotates regulatory functions of genetic variants. In this study, we utilized RegulomeDB to investigate potential regulatory functions of lead single nucleotide polymorphisms (SNPs) identified in five genome-wide association studies (GWAS) of risk and age-at onset (AAO) of LOAD, as well as SNPs in LD (r2≥0.80) with the lead GWAS SNPs. Of a total 614 SNPs examined, 394 returned RegulomeDB scores of 1–6. Of those 394 variants, 34 showed strong evidence of regulatory function (RegulomeDB score <3), and only 3 of them were genome-wide significant SNPs (ZCWPW1/rs1476679, CLU/rs1532278 and ABCA7/rs3764650). This study further supports the assumption that some of the non-coding GWAS SNPs are true associations rather than tagged associations and demonstrates the application of RegulomeDB to GWAS data.  相似文献   

7.
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system that predominantly affects young adults. The genetic contributions to this multifactorial disease were underscored by a genome wide association study (GWAS) conducted by the International Multiple Sclerosis Genetic Consortium in a multinational cohort prompting the discovery of 57 non-MHC MS-associated common genetic variants. Hitherto, few of these newly reported variants have been replicated in larger independent patient cohorts. We genotyped a cohort of 1033 MS patients and 644 healthy controls with a consistent genetic background for the 57 non-MHC variants reported to be associated with MS by the first large GWAS as well as the HLA DRB1*1501 tagging SNP rs3135388. We robustly replicated three of the 57 non-MHC reported MS-associated single nucleotide polymorphisms (SNPs). In addition, our study revealed several genotype-genotype combinations with an evidently higher degree of disease association than the genotypes of the single SNPs. We further correlated well-defined clinical phenotypes, i.e. ataxia, visual impairment due to optic neuritis and paresis with single SNPs and genotype combinations, and identified several associations. The results may open new avenues for clinical implications of the MS associated genetic variants reported from large GWAS.  相似文献   

8.
Development of post-GWAS (genome-wide association study) methods are greatly needed for characterizing the function of trait-associated SNPs. Strategies integrating various biological data sets with GWAS results will provide insights into the mechanistic role of associated SNPs. Here, we present a method that integrates RNA sequencing (RNA-seq) and allele-specific expression data with GWAS data to further characterize SNPs associated with follicular lymphoma (FL). We investigated the influence on gene expression of three established FL-associated loci—rs10484561, rs2647012, and rs6457327—by measuring their correlation with human-leukocyte-antigen (HLA) expression levels obtained from publicly available RNA-seq expression data sets from lymphoblastoid cell lines. Our results suggest that SNPs linked to the protective variant rs2647012 exert their effect by a cis-regulatory mechanism involving modulation of HLA-DQB1 expression. In contrast, no effect on HLA expression was observed for the colocalized risk variant rs10484561. The application of integrative methods, such as those presented here, to other post-GWAS investigations will help identify causal disease variants and enhance our understanding of biological disease mechanisms.  相似文献   

9.
Adiponectin is associated with obesity and insulin resistance. To date, there has been no genome-wide association study (GWAS) of adiponectin levels in Asians. Here we present a GWAS of a cohort of Korean volunteers. A total of 4,001 subjects were genotyped by using a genome-wide marker panel in a two-stage design (979 subjects initially and 3,022 in a second stage). Another 2,304 subjects were used for follow-up replication studies with selected markers. In the discovery phase, the top SNP associated with mean log adiponectin was rs3865188 in CDH13 on chromosome 16 (p = 1.69 × 10(-15) in the initial sample, p = 6.58 × 10(-39) in the second genome-wide sample, and p = 2.12 × 10(-32) in the replication sample). The meta-analysis p value for rs3865188 in all 6,305 individuals was 2.82 × 10(-83). The association of rs3865188 with high-molecular-weight adiponectin (p = 7.36 × 10(-58)) was even stronger in the third sample. A reporter assay that evaluated the effects of a CDH13 promoter SNP in complete linkage disequilibrium with rs3865188 revealed that the major allele increased expression 2.2-fold. This study clearly shows that genetic variants in CDH13 influence adiponectin levels in Korean adults.  相似文献   

10.
Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on 1H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10−8) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10−44) and lysine (rs8101881, P = 1.2×10−33), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn''s disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers.  相似文献   

11.
Genome-wide association studies (GWAS) have identified more than 160 susceptibility loci for colorectal cancer (CRC). The effects of these variants, particularly their mechanisms, however, remain unclear. In this study, a comprehensive functional annotation of CRC-related GWAS signals was firstly conducted to identify the potential causal variants. We found that the SNP rs7229639 in intron 3 of SMAD7 at 18q21.1 might serve as a putative functional variant in CRC. The SNP rs7229639 is located in a region with evidence of regulatory potential. Dual-luciferase reporter assays revealed that three other SNPs (rs77544449, rs60385309 and rs72917785), in strong linkage disequilibrium (LD) with rs7229639, exhibited allele-specific enhancer activity, of which one of the target genes may conceivably be LIPG, as suggested by eQTL association data and Hi-C data. We also verified that LIPG promoted malignancy of CRC cells in vitro, with supporting clinical data indicating that LIPG is upregulated and correlated with a poor prognosis in CRC. Finally, pitavastatin was observed to exhibit an anti-CRC activity and modest inhibition of LIPG mRNA levels. Collectively, our data suggest that these functional variants at 18q21.1 are involved in the pathogenesis of CRC by modulating enhancer activity, and possibly LIPG expression, thus indicating a promising therapeutic target for CRC. The results of functional annotation in our investigation could also serve as an inventory for CRC susceptibility SNPs and offer guides for post-GWAS downstream functional studies.  相似文献   

12.
Genome-wide association studies (GWAS) of colorectal cancer (CRC) have led to the identification of a number of common variants associated with modest risk. Several risk variants map within the vicinity of TGFβ/BMP signaling pathway genes, including rs4939827 within an intron of SMAD7 at 18q21.1. A previous study implicated a novel SNP (novel 1 or rs58920878) as a functional variant within an enhancer element in SMAD7 intron 4. In this study, we show that four SNPs including novel 1 (rs6507874, rs6507875, rs8085824, and rs58920878) in linkage disequilibrium (LD) with the index SNP rs4939827 demonstrate allele-specific enhancer effects in a large, multi-component enhancer of SMAD7. All four SNPs demonstrate allele-specific protein binding to nuclear extracts of CRC cell lines. Furthermore, some of the risk-associated alleles correlate with increased expression of SMAD7 in normal colon tissues. Finally, we show that the enhancer is responsive to BMP4 stimulation. Taken together, we propose that the associated CRC risk at 18q21.1 is due to four functional variants that regulate SMAD7 expression and potentially perturb a BMP negative feedback loop in TGFβ/BMP signaling pathways.  相似文献   

13.
High-density lipoprotein (HDL) cholesterol levels are associated with decreased risk of coronary artery disease. Several genome-wide association studies (GWAS) for HDL cholesterol levels have implicated cholesterol ester transfer protein (CETP) as possibly causal. We tested for the association between single nucleotide polymorphisms (SNPs) in CETP gene and HDL cholesterol levels in Korean population. A total of 979 subjects in Seoul City were genotyped using a genome-wide marker panel for a discovery study. Another 2,277 subjects in Bundang-Gu in Korea were used for a replication study with selected markers. In the discovery phase, the top SNP associated with mean HDL cholesterol levels was rs6499861 in the CETP gene on chromosome 16 (p=1.18×10?6 in the Seoul City sample, p=8.91×10?3 in the Bundang-Gu sample). Another SNP (rs6499863) in the CETP gene was also among the top five SNPs associated with HDL cholesterol levels (p=3.83×10?5 in the Seoul City sample, p=3.29×10?3 in the Bundang-Gu sample). SNP rs1800775 was also associated with HDL cholesterol levels (p=4.86×10?4 in meta-analysis results of 3256 samples). This study clearly demonstrates that genetic variants in CETP influence HDL cholesterol levels in Korean adults.  相似文献   

14.
15.
DNA variants, such as single nucleotide polymorphisms (SNPs) and copy number variants (CNVs), are unevenly distributed across the human genome. Currently, dbSNP contains more than 6 million human SNPs, and whole-genome genotyping arrays can assay more than 4 million of them simultaneously. In our study, we first questioned whether published genome-wide association studies (GWASs) assays cover all regions well in the genome. Using dbSNP build 135 data, we identified 50 genomic regions longer than 100 Kb that do not contain any common SNPs, i.e., those with minor allele frequency (MAF)≥1%. Secondly, because conserved regions are generally of functional importance, we tested genes in those large genomic regions without common SNPs. We found 97 genes and were enriched for reproduction function. In addition, we further filtered out regions with CNVs listed in the Database of Genomic Variants (DGV), segmental duplications from Human Genome Project and common variants identified by personal genome sequencing (UCSC). No region survived after those filtering. Our analysis suggests that, while there may not be many large genomic regions free of common variants, there are still some “holes” in the current human genomic map for common SNPs. Because GWAS only focused on common SNPs, interpretation of GWAS results should take this limitation into account. Particularly, two recent GWAS of fertility may be incomplete due to the map deficit. Additional SNP discovery efforts should pay close attention to these regions.  相似文献   

16.
Congenital heart disease (CHD) is the most common form of congenital human birth anomalies and a leading cause of perinatal and infant mortality. Some studies including our published genome-wide association study (GWAS) of CHD have indicated that genetic variants may contribute to the risk of CHD. Recently, Cordell et al. published a GWAS of multiple CHD phenotypes in European Caucasians and identified 3 susceptibility loci (rs870142, rs16835979 and rs6824295) for ostium secundum atrial septal defect (ASD) at chromosome 4p16. However, whether these loci at 4p16 confer the predisposition to CHD in Chinese population is unclear. In the current study, we first analyzed the associations between these 3 single nucleotide polymorphisms (SNPs) at 4p16 and CHD risk by using our existing genome-wide scan data and found all of the 3 SNPs showed significant associations with ASD in the same direction as that observed in Cordell’s study, but not with other subtypes- ventricular septal defect (VSD) and ASD combined VSD. As these 3 SNPs were in high linkage disequilibrium (LD) in Chinese population, we selected one SNP with the lowest P value in our GWAS scan (rs16835979) to perform a replication study with additional 1,709 CHD cases with multiple phenotypes and 1,962 controls. The significant association was also observed only within the ASD subgroup, which was heterogeneous from other disease groups. In combined GWAS and replication samples, the minor allele of rs16835979 remained significant association with the risk of ASD (OR = 1.22, 95% CI = 1.08–1.38, P = 0.001). Our findings suggest that susceptibility loci of ASD identified from Cordell’s European GWAS are generalizable to Chinese population, and such investigation may provide new insights into the roles of genetic variants in the etiology of different CHD phenotypes.  相似文献   

17.
It has been postulated that multiple-marker methods may have added ability, over single-marker methods, to detect genetic variants associated with disease. The Wellcome Trust Case Control Consortium (WTCCC) provided the first successful large genome-wide association studies (GWAS) which included single-marker association analyses for seven common complex diseases. Of those signals detected, only one was associated with coronary artery disease (CAD), and none were identified for hypertension (HTN). Our objective was to find additional genetic associations and pathways for cardiovascular disease by examining the WTCCC data for variants associated with CAD and HTN using two-marker testing methods. We applied two-marker association testing to the WTCCC dataset, which includes ~2,000 affected individuals with each disorder, and a shared pool of ~3,000 controls, all genotyped using Affymetrix GeneChip 500 K arrays. For CAD, we detected single nucleotide polymorphisms (SNP) pairs in three genes showing genome-wide significance: HFE2, STK32B, and DIPC2. The most notable SNP pairs in a non-protein-coding region were at 9p21, a known major CAD-associated region. For HTN, we detected SNP pairs in five genes: GPR39, XRCC4, MYO6, ZFAT, and MACROD2. Four further associated SNP pair regions were at least 70 kb from any known gene. We have shown that novel, multiple-marker, statistical methods can be of use in finding variants in GWAS. We describe many new, associated variants for both CAD and HTN and describe their known genetic mechanisms.  相似文献   

18.
This study is the first to use genome-wide association study (GWAS) data to evaluate the multidimensional genetic architecture underlying nasopharyngeal cancer. Since analysis of data from GWAS confirms a close and consistent association between elevated risk for nasopharyngeal carcinoma (NPC) and major histocompatibility complex class 1 genes, our goal here was to explore lesser effects of gene-gene interactions. We conducted an exhaustive genome-wide analysis of GWAS data of NPC, revealing two-locus interactions occurring between single nucleotide polymorphisms (SNPs), and identified a number of suggestive interaction loci which were missed by traditional GWAS analyses. Although none of the interaction pairs we identified passed the genome-wide Bonferroni-adjusted threshold for significance, using independent GWAS data from the same population (Stage 2), we selected 66 SNP pairs in 39 clusters with P<0.01. We identified that in several chromosome regions, multiple suggestive interactions group to form a block-like signal, effectively reducing the rate of false discovery. The strongest cluster of interactions involved the CREB5 gene and a SNP rs1607979 on chromosome 17q22 (P = 9.86×10−11) which also show trans-expression quantitative loci (eQTL) association in Chinese population. We then detected a complicated cis-interaction pattern around the NPC-associated HLA-B locus, which is immediately adjacent to copy-number variations implicated in male susceptibility for NPC. While it remains to be seen exactly how and to what degree SNP-SNP interactions such as these affect susceptibility for nasopharyngeal cancer, future research on these questions holds great promise for increasing our understanding of this disease’s genetic etiology, and possibly also that of other gene-related cancers.  相似文献   

19.
Crohn's disease is a chronic inflammatory bowel disease, with multifactorial traits, that can involve any part of the gastrointestinal tract. In recent years, a dozen genome-wide association scan and meta-analysis were published bringing the number of susceptibility alleles to more than 30 variations. However, the major susceptibility gene for Crohn's disease is NOD2, located on proximal 16q, which is involved in the innate immune response. Three main variants of this gene: two single nucleotide polymorphisms p.Arg702Trp and p.Gly908Arg substitutions and frameshift polymorphism p.Leu1007fsinsC are involved in susceptibility to Crohn's disease.  相似文献   

20.
To mine possibly hidden causal single‐nucleotide polymorphisms (SNPs) of melanoma, we investigated the association of SNPs in 76 M/G1 transition genes with melanoma risk using our published genome‐wide association study (GWAS) data set with 1804 melanoma cases and 1026 cancer‐free controls. We found multiple SNPs with P < 0.01 and performed validation studies for 18 putative functional SNPs in PSMB9 in two other GWAS data sets. Two SNPs (rs1351383 and rs2127675) were associated with melanoma risk in the GenoMEL data set (P = 0.013 and 0.004, respectively), but failed in validation using the Australian data set. Genotype–phenotype analysis revealed these two SNPs were significantly correlated with mRNA expression level of PSMB9. Further experiments revealed that SNP rs2071480, which is in high LD with rs1351383 and rs2127675, may have a weak effect on the promoter activity of PSMB9. Taken together, our data suggested that functional variants in PSMB9 may contribute to melanoma susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号