首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malignant gliomas are aggressive and highly invasive tumors. Various genetic and epigenetic changes are common for these tumors. Mostly they concern the genes involved in cell-cycle regulation, apoptotic pathways, cell invasion, angiogenesis, and cell metabolism. The role of epigenetic mechanisms in glioma malignant transformation, despite recent progress, is uncertain and remains under intense study. This review describes the mechanisms of epigenetic regulation of gene expression, including posttranslational modifications of histones, DNA methylation in promoter regions, and microRNA regulation. The genetic and epigenetic factors driving the pathogenesis of gliomas in their possible mutual influence and the potential epigenetic targets that can be used for diagnostics and new therapeutic approaches are also discussed.  相似文献   

2.
Epigenetic modification of DNA by cytosine methylation to produce 5-methylcytosine (5mC) has become well-recognized as an important epigenetic process in human health and disease. Recently, further modification of 5mC by the ten eleven translocated (TET) family of enzymes to produce 5-hydroxymethylcytosine (5hmC) has been described. In the present study, we used immunohistochemistry to evaluate the distribution of 5hmC in human brain during different periods of development and in a large series of gliomas (n=225). We found that during development, 5hmC levels are high in more differentiated compartments like the fetal cortex, but low in the periventricular progenitor cell regions. In adults, we found 5hmC levels to be highest in the cortex, but present in all intrinsic cell types in the brain including stromal elements. In brain tumors, 5hmC levels were high in low grade tumors and reduced in malignant glioma, but did not exhibit any correlation with IDH1 mutation status. Additionally, we identified a significant relationship between low levels of 5hmC and reduced survival in malignant glioma. This observation was further supported by in silico analysis showing differential expression of genes involved in 5hmC homeostasis in aggressive subsets of glioblastoma. Finally, we show that several genes involved in regulating the levels of 5hmC are also prognostic in malignant glioma. These findings suggest that 5hmC regulation in malignant glioma may represent an important determinant of tumor differentiation and aggressive behavior, as well as a potential therapeutic target.  相似文献   

3.
The platelet-derived growth factor receptor (PDGFR) is a tyrosine kinase, implicated in the development and progression of different tumors, including gliomas. Chemoresistance is a common feature of malignant gliomas. Since receptor tyrosine kinases contribute to chemoresistance in tumors, we addressed whether PDGFR signaling might confer selective growth advantage to chemoresistant cells. The effects of the PDGFR inhibitor STI571 on proliferation and PDGFR signaling were compared in chemosensitive and cisplatin-selected, chemoresistant sublines derived from glioma and from two other PDGFR-expressing tumors (ovarian carcinoma and neuroblastoma). The chemoresistant glioma U87/Pt cells were twofold more sensitive to STI571 growth-inhibitory effects than the chemosensitive U87 cells, and two- to threefold more sensitive than five unrelated glioma cell lines. The other two paired cell lines were equally responsive. Sensitization of U87/Pt cells correlated with upregulation of the PDGF-B isoform and with PDGF-BB-induced Akt overactivation, which was prevented by STI571. STI571 specifically inhibited PDGF-BB-, but not PDGF-AA- or stem cell factor-mediated signaling. In serum-containing medium, STI571 decreased phospho-Akt in U87/Pt cells, but not in U87, while activating extracellular signal-regulated kinase (Erk) in both. STI571 antiproliferative effects were partially reverted by constitutively active Akt. Cotreatment with inhibitors of phosphatidylinositol 3'-kinase (PI3K) or mitogen-activated protein kinase kinase (MEK) resulted in enhanced growth inhibition in glioma cells. Our results suggest that increased PDGF-BB signaling may sensitize chemoresistant glioma cells to STI571, suggesting a therapeutic potential for STI571 in patients with malignant gliomas refractory to chemotherapy. Simultaneous blockade of PDGFR and PI3K or Erk pathway may enhance therapeutic targeting in gliomas.  相似文献   

4.
For the first time, the epigenetic status of breast benign proliferative processes, malignant breast tumors, and metastases to regional lymph nodes has been studied using the GoldenGate Cancer Panel I DNA methylation microarray (Illumina, United States). The functional groups of differentially methylated genes were identified in each set of samples. The aberrant methylation of genes that regulate cell proliferation and mobility was found in the samples of benign proliferative breast processes. The aberrant methylation of genes responsible for cell differentiation and proliferation, as well as protein phosphorylation and cell mobility, was observed in the samples of malignant breast tumors. The differential methylation of the genes that regulate cell adhesion, the formation of anatomical structures, angiogenesis, immune response, signal transduction, and protein phosphorylation were found in samples with metastases to regional lymph nodes compared to the unaltered breast epithelium. It was found that tissues that range from benign proliferative processes and metastases to regional lymph nodes were generally characterized by a relatively lower level of epigenetic variability compared to the tissues of the primary tumor.  相似文献   

5.
6.
7.
Gliomas are the most common primary brain tumors in adults. Anaplastic astrocytoma and glioblastoma multiforme represent malignant astrocytomas, which are the most common type of malignant gliomas. Despite research efforts in cancer therapy, the prognosis of patients with malignant gliomas remains poor. Research efforts in recent years have focused on investigating the cellular, molecular, and genetic pathways involved in the progression of malignant gliomas. As a result, biomarkers have emerged as diagnostic, predictive, and prognostic tools that have the potential to transform the field of brain tumor diagnostics. An increased understanding of the important molecular pathways that have been implicated in the progression of malignant gliomas has led to the identification of potential diagnostic, prognostic, and predictive biomarkers, some bearing clinical implications for targeted therapy. Some of the most promising biomarkers to date include loss of chromosomes 1p/19q in oligodendrogliomas and expression of O-6-methylguanine-DNA methyltransferase (MGMT) or epidermal growth factor receptor (EGFR) status in glioblastomas. Other promising biomarkers in glioma research include glial fibrillary acidic protein, galectins, Kir potassium channel proteins, angiogenesis, and apoptosis pathway markers. Research into the clinical relevance and applicability of such biomarkers has the potential to revolutionize our approach to the diagnosis and treatment of patients with malignant gliomas.  相似文献   

8.
Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from serous epithelial ovarian cancer (EOC) patients, when compared to primary cultures derived from matched primary (prior to CT) tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic) stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced.Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.  相似文献   

9.
In recent years, microRNAs (miRNAs) have been proved to be closely related to the tumorigenesis and progression. An increasing number of researches have shown that microRNAs function as oncogenes or tumor suppressor genes in human malignant tumors. This study aims to explore the effects of microRNA-383 (miR-383) on malignant biological function of human gliomas. We detected the expression of miR-383 in glioma tissues and normal brain tissues by quantitative real-time PCR. Anchorage-independent growth assays, and flow cytometry were used to evaluate the functions of miR-383 that involves in cell growth and cell cycle. Western blotting assay was used to examine protein expression levels of Cyclin D1 (CCND1), a cell cycle-associated oncogene which has a predicted binding site of miR-383 within its 3′-untranslated region (3′-UTR), and luciferase activity assay was used to evaluate the 3′-UTR activity of CCND1. In this study, we found that miR-383 expression level was lower in gliomas than normal brain tissues. Overexpression of miR-383 in U251 and U87 cells showed a significant inhibitory effect on cell growth, which accompanied with cell cycle G0/G1 arrest as well as downregulation of CCND1 expression. Moreover, CCND1 was verified to be one of the direct targets of miR-383. In summary, this study suggested that miR-383 plays the role of tumor suppressor by targeting CCND1 in glioma cells, and may be useful for developing a new therapeutic strategy for gliomas.  相似文献   

10.
Gliomas are the most common primary malignant brain tumor in adults. Although these tumors are aggressive and frequently lethal, there are currently few therapeutic approaches available to prolong patient survival. MicroRNAs play important roles in regulating the expression of genes that control diverse cellular processes. Here, we investigated the expression and function of miR-139–3p in gliomas using clinical specimens, cultured cells, and a mouse xenograft tumor model. We found that miR-139–3p expression is markedly lower in human glioma tissues than in normal brain tissues. We identified melanoma differentiation-associated gene-9 (MDA-9)/syntenin, an adaptor protein implicated in tumor metastasis, as a novel direct target of miR-139–3p and showed that syntenin mRNA and miR-139–3p levels were inversely correlated in clinical specimens (r?=??0.6817, P?=?0.0002). Overexpression of miR-139–3p in human glioma cell lines inhibited cell proliferation, migration, and invasion, and these effects were rescued by co-transfection with syntenin. Our results indicate that miR-139–3p plays a significant role in controlling behaviors associated with the malignant progression of gliomas, and we identify the miR-139-3p–syntenin axis as a potential therapeutic target for glioma.  相似文献   

11.
血液肿瘤作为一类常见恶性肿瘤疾病主要包括各类白血病、多发性骨髓瘤以及恶性淋巴瘤.随着现代社会高速发展,人群发病率呈逐年升高趋势,且发病年龄逐渐低龄化,发病原因与环境因素以及遗传因素密不可分.近年来研究发现,表观遗传学修饰在血液肿瘤发生发展的过程中扮演了重要角色,一些相关修饰基因作为血液肿瘤的治疗靶点在临床应用上取得了重要进展.针对近年来表观遗传学修饰在血液肿瘤中的研究新进展,本文将系统综述DNA甲基化、组蛋白修饰、非编码RNA及RNA修饰等在血液肿瘤发病机制方面的研究进展.  相似文献   

12.
Microsatellite instability.   总被引:5,自引:0,他引:5  
Unlike aneuploidy, considered to be the cardinal feature of malignant tumors ever since the chromosomal analysis of neoplastic cells became technically feasible, a second pathway toward malignancy has emerged over the past decade that is not characterized by gross aneuploidy but, instead, by inactivation of the DNA mismatch repair system, leading to a hypermutable state in which simple repetitive DNA sequences are unstable during DNA replication. Although mutations of many of these microsatellite sequences are presumably innocuous, because they do not occur in the coding or regulatory regions of genes, other such sequences are critically located in the coding regions of genes involved in the regulation of cell growth. First discovered in the rather uncommon hereditary nonpolyposis colorectal cancer syndrome, where there is an inactivating germline mutation in one of the DNA mismatch repair genes and most of the tumors show microsatellite instability, the latter phenomenon has since been implicated in about 15% of sporadic colorectal cancers, as well as in cancers at several other sites, such as the endometrium. Tumors showing microsatellite instability are generally near-diploid, are at a low stage of development, have a favorable prognosis, and, in the colon, are commonly located on the right side. In recent years, epigenetic phenomena, including hypermethylation and loss of imprinting, have come to be recognized as having a significant bearing on the development of these tumors.  相似文献   

13.
14.
Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.  相似文献   

15.
16.
17.
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.  相似文献   

18.
《Epigenetics》2013,8(11):1238-1248
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.  相似文献   

19.
Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma.  相似文献   

20.
《Epigenetics》2013,8(1):41-46
HOX genes are developmental genes that determine anterior–posterior embryonic pattern and govern the process of differentiation. Inappropriate expression of HOX genes has been implicated in developmental abnormalities and hematopoietic malignancies. In addition, HOX genes silencing by DNA methylation has been reported in cancers and related to disease aggressiveness and outcome. On the other hand, accumulating evidence suggests that epigenetic changes at HOX genes are linked to normal development and differentiation. To better understand the relationship between HOXA methylation and cancer, we analyzed the methylation pattern of HOXA genes in human primary breast and colon carcinomas, normal tissues and normal white blood cells. Genome-wide methylation arrays of breast cancers and white blood cells demonstrated similar methylation patterns. Quantitative methylation analysis of seven representative HOXA genes revealed various levels of methylation in both normal tissues and cancers. Analysis of epithelial-enriched normal breast tissue and stroma indicated that the stroma was the major origin of HOXA methylation. Furthermore, in selected dense breast cancers, minimal increase in methylation of several HOXA genes did not correlate with the predominance of malignant epithelial cells in these tumors. Our results suggest that methylation of the HOXA cluster may be a normal developmental and cell type specific process rather than a cancer specific mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号