首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyclin-dependent kinase (CDK) governs cell cycle progression, and its kinase activity fluctuates during the cell cycle. Mitotic exit pathways are responsible for the inactivation of CDK after chromosome segregation by promoting the release of a nucleolus-sequestered phosphatase, Cdc14, which antagonizes CDK. In the budding yeast Saccharomyces cerevisiae, mitotic exit is controlled by the FEAR (for "Cdc-fourteen early anaphase release") and mitotic exit network (MEN) pathways. In response to DNA damage, two branches of the DNA damage checkpoint, Chk1 and Rad53, are activated in budding yeast to prevent anaphase entry and mitotic exit, allowing cells more time to repair damaged DNA. Here we present evidence indicating that yeast cells negatively regulate mitotic exit through two distinct pathways in response to DNA damage. Rad53 prevents mitotic exit by inhibiting the MEN pathway, whereas the Chk1 pathway prevents FEAR pathway-dependent Cdc14 release in the presence of DNA damage. In contrast to previous data, the Rad53 pathway negatively regulates MEN independently of Cdc5, a Polo-like kinase essential for mitotic exit. Instead, a defective Rad53 pathway alleviates the inhibition of MEN by Bfa1.  相似文献   

2.
At the latest stages of their cell cycle, cells carry out crucial processes for the correct segregation of their genetic and cytoplasmic material. In this work, we provide evidence demonstrating that the cell cycle arrest of some MEN (mitosis exit network) mutants in the anaphase-telophase transition is bypassed. In addition, the ability of cdc15 diploid mutant strains to develop non-septated chains of cells, supported by nuclear division, is shown. This phenotype is also displayed by haploid cdc15 mutant strains when cell lysis is prevented by osmotic protection, and shared by other MEN mutants. By contrast, anaphase-telophase arrest is strictly observed in double MEN-FEAR (fourteen early anaphase release) mutants. In this context, the overexpression of a FEAR component, SPO12, in a MEN mutant background enhances the ability of MEN mutants to bypass cell cycle arrest. Taken together, these data suggest a critical role of Cdc15 and other MEN proteins in cytokinesis, allowing a new model for their cellular function to be proposed.  相似文献   

3.
In Saccharomyces cerevisiae exit from mitosis requires the Cdc14 phosphatase to reverse CDK-mediated phosphorylation. Cdc14 is released from the nucleolus by the Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN) pathways. In meiosis, the FEAR pathway is essential for exit from anaphase I. The MEN component Cdc15 is required for the formation of mature spores. To analyze the role of Cdc15 during sporulation, a conditional mutant in which CDC15 expression was controlled by the CLB2 promoter was used. Cdc15-depleted cells proceeded normally through the meiotic divisions but were unable to properly disassemble meiosis II spindles. The morphology of the prospore membrane was aberrant and failed to capture the nuclear lobes. Cdc15 was not required for Cdc14 release from the nucleoli, but it was essential to maintain Cdc14 released and for its nucleo-cytoplasmic transport. However, cells carrying a CDC14 allele with defects in nuclear export (Cdc14-DeltaNES) were able to disassemble the spindle and to complete spore formation, suggesting that the Cdc14 nuclear export defect was not the cause of the phenotypes observed in cdc15 mutants.  相似文献   

4.
In budding yeast Saccharomyces cerevisiae, Cdc5 kinase is a component of mitotic exit network (MEN), which inactivates cyclin-dependent kinase (CDK) after chromosome segregation. cdc5-1 mutants arrest at telophase at the nonpermissive temperature due to the failure of CDK inactivation. To identify more negative regulators of MEN, we carried out a genetic screen for genes that are toxic to cdc5-1 mutants when overexpressed. Genes that encode the B-regulatory subunit (Cdc55) and the three catalytic subunits (Pph21, Pph22, and Pph3) of phosphatase 2A (PP2A) were isolated. In addition to cdc5-1, overexpression of CDC55, PPH21, or PPH22 is also toxic to other temperature-sensitive mutants that display defects in mitotic exit. Consistently, deletion of CDC55 partially suppresses the temperature sensitivity of these mutants. Moreover, in the presence of spindle damage, PP2A mutants display nuclear localized Cdc14, the key player in MEN pathway, indicative of MEN activation. All the evidence suggests the negative role of PP2A in mitotic exit. Finally, our genetic and biochemical data suggest that PP2A regulates the phosphorylation of Tem1, which acts at the very top of MEN pathway.  相似文献   

5.
Screening of cdc mutants of fission yeast for those whose cell cycle arrest is independent of the DNA damage checkpoint identified the RNA splicing-deficient cdc28 mutant. A search for mutants of cdc28 cells that enter mitosis with unspliced RNA resulted in the identification of an orb5 point mutant. The orb5+ gene, which encodes a catalytic subunit of casein kinase II, was found to be required for cell cycle arrest in other mutants with defective RNA metabolism but not for operation of the DNA replication or DNA damage checkpoints. Loss of function of wee1+ or rad24+ also suppressed the arrest of several splicing mutants. Overexpression of the major B-type cyclin Cdc13p induced cdc28 cells to enter mitosis. The abundance of Cdc13p was reduced, and the phosphorylation of Cdc2p on tyrosine 15 was maintained in splicing-defective cells. These results suggest that regulation of Cdc13p and Cdc2p is required for G2 arrest in splicing mutants.  相似文献   

6.
Wang Y  Hu F  Elledge SJ 《Current biology : CB》2000,10(21):1379-1382
At the end of the cell cycle, cyclin-dependent kinase (CDK) activity is inactivated to allow mitotic exit [1]. A protein phosphatase, Cdc14, plays a key role during mitotic exit in budding yeast by activating the Cdh1 component of the anaphase-promoting complex to degrade cyclin B (Clb) and inducing the CDK inhibitor Sic1 to inactivate Cdk1 [2]. To prevent mitotic exit when the cell cycle is arrested at G2/M, cells must prevent CDK inactivation. In the spindle checkpoint pathway, this is accomplished through Bfa1/Bub2, a heteromeric GTPase-activating protein (GAP) that inhibits Clb degradation by keeping the G protein Tem1 inactive [3-5]. Tem1 is required for Cdc14 activation. Here we show that in budding yeast, BUB2 and BFA1 are also required for the maintenance of G2/M arrest in response to DNA damage and to spindle misorientation. cdc13-1 bub2 and cdc13-1 bfa1 but not cdc13-1 mad2 double mutants rebud and reduplicate their DNA at the restrictive temperature. We also found that the delay in mitotic exit in mutants with misoriented spindles depended on BUB2 and BFA1, but not on MAD2. We propose that Bfa1/Bub2 checkpoint pathway functions as a universal checkpoint in G2/M that prevents CDK inactivation in response to cell-cycle delay in G2/M.  相似文献   

7.
The condensin complex is the chief molecular machine of mitotic chromosome condensation. Nucleolar concentration of condensin in mitosis was previously shown to correlate with proficiency of rDNA condensation and segregation. To uncover the mechanisms facilitating this targeting we conducted a screen for mutants that impair mitotic condensin congression to the nucleolus. Mutants in the cdc14, esp1 and cdc5 genes, which encode FEAR-network components, showed the most prominent defects in mitotic condensin localization. We established that Cdc14p activity released by the FEAR pathway was required for proper condensin-to-rDNA targeting in anaphase. The MEN pathway was dispensable for condensin-to-rDNA targeting, however MEN-mediated release of Cdc14p later in anaphase allowed for proper, albeit delayed, condensin targeting to rDNA and successful segregation of nucleolus in the slk19 FEAR mutant. Although condensin was physically dislodged from rDNA in the cdc14 mutant, it was properly assembled, phosphorylated and chromatin-bound, suggesting that condensin was mistargeted but active. This study identifies a novel pathway promoting condensin targeting to a specific chromosomal address, the rDNA locus.  相似文献   

8.
To investigate the means by which a cell regulates the progression of the mitotic cell cycle, we characterized cdc44, a mutation that causes Saccharomyces cerevisiae cells to arrest before mitosis. CDC44 encodes a 96-kDa basic protein with significant homology to a human protein that binds DNA (PO-GA) and to three subunits of human replication factor C (also called activator 1). The hypothesis that Cdc44p is involved in DNA metabolism is supported by the observations that (i) levels of mitotic recombination suggest elevated rates of DNA damage in cdc44 mutants and (ii) the cell cycle arrest observed in cdc44 mutants is alleviated by the DNA damage checkpoint mutations rad9, mec1, and mec2. The predicted amino acid sequence of Cdc44p contains GTPase consensus sites, and mutations in these regions cause a conditional cell cycle arrest. Taken together, these observations suggest that the essential CDC44 gene may encode the large subunit of yeast replication factor C.  相似文献   

9.
Anaphase onset and mitotic exit are regulated by the spindle assembly or kinetochore checkpoint, which inhibits the anaphase-promoting complex (APC), preventing the degradation of anaphase inhibitors and mitotic cyclins. As a result, cells arrest with high cyclin-dependent kinase (CDK) activity due to the accumulation of cyclins. Aside from this, a clear-cut demonstration of a direct role for CDKs in the spindle checkpoint response has been elusive. Cdc28 is the main CDK driving the cell cycle in budding yeast. In this report, mutations in cdc28 are described that confer specific checkpoint defects, supersensitivity towards microtubule poisons and chromosome loss. Two alleles encode single mutations in the N and C terminal regions, respectively (R10G and R288G), and one allele specifies two mutations near the C terminus (F245L, I284T). These cdc28 mutants are unable to arrest or efficiently prevent sister chromatid separation during treatment with nocodazole. Genetic interactions with checkpoint and apc mutants suggest Cdc28 may regulate checkpoint arrest downstream of the MAD2 and BUB2 pathways. These studies identify a C-terminal domain of Cdc28 required for checkpoint arrest upon spindle damage that mediates chromosome stability during vegetative growth, suggesting that it has an essential surveillance function in the unperturbed cell cycle.Communicated by A. Aguilera  相似文献   

10.
Background Mitosis is regulated by MPF (maturation promoting factor), the active form of Cdc2/28–cyclin B complexes. Increasing levels of cyclin B abundance and the loss of inhibitory phosphates from Cdc2/28 drives cells into mitosis, whereas cyclin B destruction inactivates MPF and drives cells out of mitosis. Cells with defective spindles are arrested in mitosis by the spindle-assembly checkpoint, which prevents the destruction of mitotic cyclins and the inactivation of MPF. We have investigated the relationship between the spindle-assembly checkpoint, cyclin destruction, inhibitory phosphorylation of Cdc2/28, and exit from mitosis.Results The previously characterized budding yeast mad mutants lack the spindle-assembly checkpoint. Spindle depolymerization does not arrest them in mitosis because they cannot stabilize cyclin B. In contrast, a newly isolated mutant in the budding yeast CDC55 gene, which encodes a protein phosphatase 2A (PP2A) regulatory subunit, shows a different checkpoint defect. In the presence of a defective spindle, these cells separate their sister chromatids and leave mitosis without inducing cyclin B destruction. Despite the persistence of B-type cyclins, cdc55 mutant cells inactivate MPF. Two experiments show that this inactivation is due to inhibitory phosphorylation on Cdc28: phosphotyrosine accumulates on Cdc28 in cdc55Δ cells whose spindles have been depolymerized, and a cdc28 mutant that lacks inhibitory phosphorylation sites on Cdc28 allows spindle defects to arrest cdc55 mutants in mitosis with active MPF and unseparated sister chromatids.Conclusions We conclude that perturbations of protein phosphatase activity allow MPF to be inactivated by inhibitory phosphorylation instead of by cyclin destruction. Under these conditions, sister chromatid separation appears to be regulated by MPF activity rather than by protein degradation. We discuss the role of PP2A and Cdc28 phosphorylation in cell-cycle control, and the possibility that the novel mitotic exit pathway plays a role in adaptation to prolonged activation of the spindle-assembly checkpoint.  相似文献   

11.
Eukaryotic genome integrity is maintained via a DNA damage checkpoint that recognizes DNA damage and halts the cell cycle at metaphase, allowing time for repair. Checkpoint signaling is eventually terminated so that the cell cycle can resume. How cells restart cell division following checkpoint termination is poorly understood. Here we show that the SUMO protease Ulp2 is required for resumption of cell division following DNA damage-induced arrest in Saccharomyces cerevisiae, although it is not required for DNA double-strand break repair. The Rad53 branch of the checkpoint pathway generates a signal countered by Ulp2 activity following DNA damage. Interestingly, unlike previously characterized adaptation mutants, ulp2Delta mutants do not show persistent Rad53 phosphorylation following DNA damage, suggesting checkpoint signaling has been terminated and no longer asserts an arrest in these cells. Using Cdc14 localization as a cell cycle indicator, we show that nearly half of cells lacking Ulp2 can escape a checkpoint-induced metaphase arrest despite their inability to divide again. Moreover, half of permanently arrested ulp2Delta cells show evidence of an aberrant mitotic spindle, suggesting that Ulp2 is required for proper spindle dynamics during cell cycle resumption following a DNA damage-induced cell cycle arrest.  相似文献   

12.
When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN), in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression.  相似文献   

13.
Budding yeast Cdc14 phosphatase plays essential roles in mitotic exit. Cdc14 is sequestered in the nucleolus by its inhibitor Net1/Cfi1 and is only released from the nucleolus during anaphase to inactivate mitotic CDK. It is believed that the mitotic exit network (MEN) is required for the release of Cdc14 from the nucleolus because liberation of Cdc14 by net1/cfi1 mutations bypasses the essential role of the MEN. But how the MEN residing at the spindle pole body (SPB) controls the association of Cdc14 with Net1/Cfi1 in the nucleolus is not yet understood. We found that Cdc14-5GFP was released from the nucleolus in the MEN mutants (tem1, cdc15, dbf2, and nud1), but not in the cdc5 cells during early anaphase. The Cdc14 liberation from the nucleolus was inhibited by the Mad2 checkpoint and by the Bub2 checkpoint in a different manner when microtubule organization was disrupted. We observed Cdc14-5GFP at the SPB in addition to the nucleolus. The SPB localization of Cdc14 was significantly affected by the MEN mutations and the bub2 mutation. We conclude that Cdc14 is released from the nucleolus at the onset of anaphase in a CDC5-dependent manner and that MEN factors possibly regulate Cdc14 release from the SPB.  相似文献   

14.
Cdc14 phosphatase is a key regulator of exit from mitosis, acting primarily through antagonism of cyclin-dependent kinase, and is also thought to be important for meiosis. Cdc14 is released from its sequestration site in the nucleolus in two stages, first by the non-essential Cdc Fourteen Early Anaphase Release (FEAR) pathway and later by the essential Mitotic Exit Network (MEN), which drives efficient export of Cdc14 to the cytoplasm. We find that Cdc14 is confined to the nucleus during early mitotic anaphase release, and during its meiosis I release. Proteins whose degradation is directed by Cdc14 as a requirement for mitotic exit (e.g. the B-type cyclin, Clb2), remain stable during mitotic FEAR, a result consistent with Cdc14 being restricted to the nucleus and not participating directly in mitotic exit. Cdc14 released by the FEAR pathway has been proposed to have a wide variety of activities, all of which are thought to promote passage through anaphase. Proposed functions of FEAR include stabilization of anaphase spindles, resolution of the rDNA to allow its segregation, and priming of the MEN so that mitotic exit can occur promptly and efficiently. We tested the model for FEAR functions using the FEAR-deficient mutation net1-6cdk. Our cytological observations indicate that, contrary to the current model, FEAR is fully dispensable for timely progression through a series of anaphase landmarks and mitotic exit, although it is required for timely rDNA segregation. The net1-6cdk mutation suppresses temperature-sensitive mutations in MEN genes, suggesting that rather than activating mitotic exit, FEAR either inhibits the MEN or has no direct effect upon it. One interpretation of this result is that FEAR delays MEN activation to ensure that rDNA segregation occurs before mitotic exit. Our findings clarify the distinction between FEAR and MEN-dependent Cdc14 activities and will help guide emerging quantitative models of this cell cycle transition.  相似文献   

15.
In Saccharomyces cerevisiae, mitosis is coupled to cell division by the action of the Cdc fourteen early anaphase release (FEAR) and mitotic exit network (MEN) regulatory networks, which mediate exit from mitosis by activation of the phosphatase Cdc14. The closely related filamentous ascomycete Ashbya gossypii provides a unique cellular setting to study the evolution of these networks. Within its multinucleate hyphae, nuclei are free to divide without the spatial and temporal constraints described for budding yeast. To investigate how this highly conserved system has adapted to these circumstances, we constructed a series of mutants lacking homologues of core components of MEN and FEAR and monitored phenomena such as progression through mitosis and Cdc14 activation. MEN homologues in A. gossypii were shown to have diverged from their anticipated role in Cdc14 release and exit from mitosis. We observed defects in septation, as well as a partial metaphase arrest, in Agtem1Δ, Agcdc15Δ, Agdbf2/dbf20Δ, and Agmob1Δ. A. gossypii homologues of the FEAR network, on the other hand, have a conserved and more pronounced role in regulation of the M/G1 transition. Agcdc55Δ mutants are unable to sequester AgCdc14 throughout interphase. We propose a reduced model of the networks described in yeast, with a low degree of functional redundancy, convenient for further investigations into these networks.  相似文献   

16.
Exit from mitosis is regulated by Cdc14, which plays an essential role intriggering cyclin-dependent kinase inactivation. Throughout most of the cell cycle,Cdc14 is sequestered in the nucleolus where it remains inactive. After thecompletion of anaphase, an essential signaling cascade, named the Mitotic ExitNetwork, or MEN, promotes Cdc14 release. Cdc14 is also released from thenucleolus in early anaphase by another, nonessential, pathway called FEAR(CdcFourteen Early Anaphase Release). Separase (Esp1), polo kinase (Cdc5), thekinetochore protein Slk19, and Spo12, whose molecular function remains unknown,have been identified as members of the FEAR pathway. In meiosis, mutations inCDC14 and its FEAR pathway regulators, CDC5, SLK19, and SPO12, all form ascithat contain only two diploid spores because of a defect in the ability to exit meiosisI. Thus although the FEAR pathway is dispensible for mitotic exit it, is essential formeiosis I exit. The way that the genes of the Mitotic Exit Network contribute tocoordinating meiotic progression is less clear. Here, we explore this issue. Ourresults demonstrate that the orderly transition from meiosis I to meiosis II isaccomplished by eliminating MEN function and using the FEAR pathway tomodulate cyclin dependent kinase activity, in part through the actions of SIC1.  相似文献   

17.
Upon prolonged activation of the spindle assembly checkpoint, cells escape from mitosis through a mechanism called adaptation or mitotic slippage, which is thought to underlie the resistance of cancer cells to antimitotic drugs. We show that, in budding yeast, this mechanism depends on known essential and nonessential regulators of mitotic exit, such as the Cdc14 early anaphase release (FEAR) pathway for the release of the Cdc14 phosphatase from the nucleolus in early anaphase. Moreover, the RSC (remodel the structure of chromatin) chromatin-remodeling complex bound to its accessory subunit Rsc2 is involved in this process as a novel component of the FEAR pathway. We show that Rsc2 interacts physically with the polo kinase Cdc5 and is required for timely phosphorylation of the Cdc14 inhibitor Net1, which is important to free Cdc14 in the active form. Our data suggest that fine-tuning regulators of mitotic exit have important functions during mitotic progression in cells treated with microtubule poisons and might be promising targets for cancer treatment.  相似文献   

18.
19.
Fission yeast p56(chk1) kinase is known to be involved in the DNA damage checkpoint but not to be required for cell cycle arrest following exposure to the DNA replication inhibitor hydroxyurea (HU). For this reason, p56(chk1) is considered not to be necessary for the DNA replication checkpoint which acts through the inhibitory phosphorylation of p34(cdc2) kinase activity. In a search for Schizosaccharomyces pombe mutants that abolish the S phase cell cycle arrest of a thermosensitive DNA polymerase delta strain at 37 degrees C, we isolated two chk1 alleles. These alleles are proficient for the DNA damage checkpoint, but induce mitotic catastrophe in several S phase thermosensitive mutants. We show that the mitotic catastrophe correlates with a decreased level of tyrosine phosphorylation of p34(cdc2). In addition, we found that the deletion of chk1 and the chk1 alleles abolish the cell cycle arrest and induce mitotic catastrophe in cells exposed to HU, if the cells are grown at 37 degrees C. These findings suggest that chk1 is important for the maintenance of the DNA replication checkpoint in S phase thermosensitive mutants and that the p56(chk1) kinase must possess a novel function that prevents premature activation of p34(cdc2) kinase under conditions of impaired DNA replication at 37 degrees C.  相似文献   

20.
In meiosis, accumulation of recombination intermediates or defects in chromosome synapsis trigger checkpoint-mediated arrest in prophase I. Such 'checkpoints' are important surveillance mechanisms that ensure temporal dependence of cell cycle events. The budding yeast Polo-like kinase, Cdc5, has been identified as a key regulator of the meiosis I chromosome segregation pattern. Here we have analysed the role of Cdc5 in the recombination checkpoint and observed that Polo-like kinase is not required for checkpoint activation in yeast meiosis. Surprisingly, depletion of CDC5 in the Drad17 checkpoint-defective background resulted in nuclear fragmentation to levels even higher than that observed inDdmc1 Drad17 cells that bypass the checkpoint arrest despite accumulating DNA double-strand breaks. The spindle morphology of Cdc5-depleted cells included short, thick metaphase I spindles in mononucleate cells and disassembled spindles in binucleate and tetranucleate cells, although this phenotype does not appear to be the cause of the nuclear fragmentation. An exaggeration of chromosome synapsis defects occurred in Cdc5-depleted Drad17 cells and may contribute to the nuclear fragmentation phenotype. The analysis also uncovered a role for Cdc5 in maintaining spindle integrity in Ddmc1 Drad17 cells. Further analysis confirmed that adaptation to DNA damage does occur in meiosis and that CDC5 is required for this process. The cdc5-ad mutation that renders cells unable to adapt to DNA damage in mitosis did not affect checkpoint adaptation in meiosis, indicating that the mechanisms of checkpoint adaptation in mitosis and meiosis are not fully conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号