首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA methylation is a central epigenetic event that regulates cellular differentiation, reprogramming, and pathogenesis. DNA demethylation occurs in preimplantation embryos and primordial germ cells. Recent studies suggest that TET3‐mediated oxidation of 5‐methylcytosine (5‐mC) contributes to genome‐wide loss of DNA methylation, yet the mechanism of this process in bovine preimplanted embryos has remained unknown. In this study, we analyzed the expression of Tet gene family at different stages of embryo development. The results revealed that Tet3 was highly expressed in bovine oocytes and in vitro fertilization preimplantation embryos. Knockdown of Tet3 by injection of siRNA in germinal vesicle oocytes was used to assess its role in epigenetic remodeling and embryo development. The results showed that knockdown of Tet3 significantly inhibited oocyte development, maturation, fertilization, and decreased subsequently cleavage and blastocyst rates. Tet3 knockdown significantly increased 5‐mC levels, whereas the 5‐hmC levels slightly declined. The quantitative polymerase chain reaction data showed that expression levels of the pluripotency genes (POU5F1 and NANOG) were significantly decreased, but the imprinted gene H19 did not change in the Tet3 knockdown group. In addition, some pluripotency genes (POU5F1 and NANOG) and repeated elements (satellite I and α‐satellite) promoter regions showed hypermethylation in the Tet3 knockdown group, except the imprinted gene H19. Furthermore, the percentage of apoptotic cells and the expression levels of the proapoptotic gene BAX were significantly increased, whereas the antiapoptotic gene BCL‐2 messenger RNA levels were decreased in the Tet3 knockdown group. Our results indicated that Tet3 could influence the expression level of the pluripotency genes through regulating the methylation status of the promoter region, thus affect embryonic development.  相似文献   

3.
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote.  相似文献   

4.
5.
Accurate reprogramming of DNA methylation occurring in preimplantation embryos is critical for normal development of both fetus and placenta. Environmental stresses imposed on oocytes usually cause the abnormal DNA methylation reprogramming of early embryos. However, whether oocyte vitrification alters the reprogramming of DNA methylation (5 mC) and its derivatives in mouse preimplantation embryo development remains largely unknown. Here, we found that the rate of cleavage and blastocyst formation of embryos produced by IVF of vitrified matured oocytes was significantly lower than that in control counterparts, but the quality of blastocysts was not impaired by oocyte vitrification. Additionally, although vitrification neither altered the dynamic changes of 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5 fC) before 4-cell stage nor affected the levels of 5 mC and 5-carboxylcytosine (5caC) throughout the preimplantation development, vitrification significantly reduced the levels of 5hmC and 5 fC from 8-cell stage onwards. Correspondingly, vitrification did not alter the expression patterns of Tet3 in preimplantation embryos but apparently reduced the expression levels of Tet1 in 4-cell and 8-cell embryos and increased the expression levels of Tet2 at morula stage. Taken together, these results demonstrate that oocyte vitrification perturbs DNA methylation reprogramming in mouse preimplantation embryo development.  相似文献   

6.
7.
As an assisted reproduction technology, vitrification has been widely used for oocyte and embryo cryopreservation. Many studies have indicated that vitrification affects ultrastructure, gene expression, and epigenetic status. However, it is still controversial whether oocyte vitrification could induce DNA damage in metaphase II (MII) oocytes and the resulting early embryos. This study determined whether mouse oocytes vitrification induce DNA damage in MII oocytes and the resulting preimplantation embryos, and causes for vitrification‐induced DNA damage. The effects of oocyte vitrification on reactive oxygen species (ROS) levels, γ‐H2AX accumulation, apoptosis, early embryonic development, and the expression of DNA damage‐related genes in early embryos derived by in vitro fertilization were examined. The results indicated that vitrification significantly increased the number of γ‐H2AX foci in zygotes and two‐cell embryos. Trp53bp1 was upregulated in zygotes, two‐cell embryos and four‐cell embryos in the vitrified group, and Brca1 was increased in two‐cell embryos after vitrification. Vitrification also increased the ROS levels in MII oocytes, zygotes, and two‐cell embryos and the apoptotic rate in blastocysts. Resveratrol (3,5,4′‐trihydroxystilbene) treatment decreased the ROS levels and the accumulation of γ‐H2AX foci in zygotes and two‐cell embryos and the apoptotic rate in blastocysts after vitrification. Overall, vitrification‐induced abnormal ROS generation, γ‐H2AX accumulation, an increase in the apoptotic rate and the disruption of early embryonic development. Resveratrol treatment could decrease ROS levels, γ‐H2AX accumulation, and the apoptotic rate and improve early embryonic development. Vitrification‐associated γ‐H2AX accumulation is at least partially due to abnormal ROS generation.  相似文献   

8.
9.
Wang LM  Wen JX  Yuan JL  Cang M  Liu DJ 《Cytotechnology》2012,64(2):165-172
This study aimed to assess the efficiency and effects of insulin-like growth factor receptor-1 (IGF-IR) siRNA knockdown during bovine preimplantation embryonic development. In oocytes injected with IGF-IR siRNA, the relative IGF-IR mRNA levels compared to controls were 28% and 46% at 6 and 24 h after injection, respectively. With respect to the injection of IGF-IR siRNA in zygotes, 24 h after injection the relative levels of IGF-IR mRNA and protein in the two-cell embryos were 74% and 78% of those in the controls, respectively. IGF-IR siRNA reduced blastocyst formation (23.2%) compared to siRNA controls (33.0%) and uninjected oocytes (35.4%; P < 0.05) and the number of viable cells per IGF-IR siRNA-treated blastocyst (64 ± 3) was significantly reduced, compared to control siRNA and uninjected blastocysts (81 ± 3 and 116 ± 4; P < 0.01). In conclusion, IGF-IR siRNA knockdown reduces the development of bovine embryos, and microinjection in zygotes can decrease blastocyst cell number.  相似文献   

10.
小鼠母源因子对早期胚胎发育的影响   总被引:3,自引:0,他引:3  
在脊椎动物中发育过程中,卵母细胞要经历MII期停滞、受精、早期胚胎发育的启动、胚胎基因组的转录激活、并指导完成个体的发育过程。同时,核移植过程中,分化的细胞核在去核的卵母细胞中能够重编程到胚胎早期的状态并能完成个体的发育过程。在这些发育过程中母源因子都发挥了极其的重要作用。在小鼠胚胎发育研究中发现,小鼠的基因组激活发生在2细胞期,这一时期标志着合子的发育由卵母细胞控制向胚胎控制的过渡,期间发生一系列复杂的生化过程。体外培养的小鼠的胚胎的发育阻断也易发生的2细胞时期。因此对卵母细胞及早期胚胎母源因子的研究,将有利于了解早期体外培养胚胎和克隆胚胎发育失败的原因,为提高体外培养和克隆胚胎发育的成功率提供理论的基础。  相似文献   

11.
12.
13.
14.
15.
16.
17.
Oocyte quality, which is directly related to reprogramming competence, is a major important limiting factor in animal cloning efficiency. Compared with oocytes matured in vivo, in vitro matured oocytes exhibit lower oocyte quality and reprogramming competence primarily because of their higher levels of reactive oxygen species. In this study, we investigate whether supplementing the oocyte maturation medium with melatonin, a free radical scavenger, could improve oocyte quality and reprogramming competence. We found that 10−9 M melatonin effectively alleviated oxidative stress, markedly decreased early apoptosis levels, recovered the integrity of mitochondria, ameliorated the spindle assembly and chromosome alignment in oocytes, and significantly promoted subsequent cloned embryo development in vitro. We also analyzed the effects of melatonin on epigenetic modifications in bovine oocytes. Melatonin increased the global H3K9 acetylation levels, reduced the H3K9 methylation levels, and minimally affected DNA methylation and hydroxymethylation. Genome-wide expression analysis of genes in melatonin-treated and nontreated oocytes was also conducted by high-throughput RNA sequencing. Our results indicated that melatonin ameliorates oocyte oxidative stress and improves subsequent in vitro development of bovine cloned embryos.  相似文献   

18.
19.
《Autophagy》2013,9(8):1076-1078
After fertilization, the maternal proteins stored in oocytes are degraded and new proteins encoded by the zygotic genome are synthesized. Although several proteins are degraded by the ubiquitin-proteasome system, the mechanism underlying the dynamic protein turnover during this process remains largely unknown. We recently reported that autophagy plays a critical role during preimplantation embryonic development. We found that the level of autophagy was low in unfertilized oocytes; however, autophagy was activated shortly after fertilization. The function of autophagy was further analyzed using oocyte-specific Atg5 (autophagy-related 5) knockout mice. Atg5-null oocytes could develop if they were fertilized with wild-type sperm, but could not develop beyond the four- and eight-cell stages if they were fertilized with Atg5-null sperm. Furthermore, protein synthesis rates were reduced in the autophagy-deficient embryos. We have previously reported that Atg5-null oocytes derived from Atg5+/- mice, which should contain maternally inherited Atg5 protein in the oocyte, were able to produce Atg5-/- neonates, emphasizing the specific importance of autophagy during very early embryogenesis. Thus, the degradation of maternal factors by autophagy is essential for preimplantation development in mammals.

Addendum to: Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N. Autophagy is essential for preimplantation development of mouse embryos. Science 2008; 321:117-20.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号