首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the potential for the p16‐cyclin D‐CDK4/6‐retinoblastoma protein pathway to be exploited as a therapeutic target in melanoma. In a cohort of 143 patients with primary invasive melanoma, we used fluorescence in situ hybridization to detect gene copy number variations (CNVs) in CDK4, CCND1, and CDKN2A and immunohistochemistry to determine protein expression. CNVs were common in melanoma, with gain of CDK4 or CCND1 in 37 and 18% of cases, respectively, and hemizygous or homozygous loss of CDKN2A in 56%. Three‐quarters of all patients demonstrated a CNV in at least one of the three genes. The combination of CCND1 gain with either a gain of CDK4 and/or loss of CDKN2A was associated with poorer melanoma‐specific survival. In 47 melanoma cell lines homozygous loss, methylation or mutation of CDKN2A gene or loss of protein (p16INK4A) predicted sensitivity to the CDK4/6 inhibitor PD0332991, while RB1 loss predicted resistance.  相似文献   

2.
3.
ABSTRACT Trichocysts of Pseudomicrothorax dubius were ejected by 15% ethanol in phosphate-buffered culture medium (CM) and purified on discontinuous sucrose gradients, in which they concentrated in the lower part of the 27% phase and in the 57% phase. These phases were washed by 15% ethanol in CM, or by CM alone, and pooled. Ejected trichocysts observed by Nomarski interference contrast microscopy and after negative-staining for electron microscopy show a shaft with periodic cross-bands and four opened-out arms, sometimes with electron-dense droplets at both ends of each arm. On SDS-PAGE, trichocysts show ?20 protein bands. The major bands are at 31 and 30 kD (G1), 27 and 26.5 kD (G2), 25 kD, 23 kD, and six bands at 15–20 kD (G3). Minor bands are observed above 30 kD, among them ciliary components which contaminate the trichocyst fraction. The trichocyst banding pattern was reproducible with different ejection media; however, the 30 kD disappeared when the buffered ejection medium contained no added Ca2+ or contained EDTA. When the trichocyst extract is solubilized in sample buffer without 2-mercaptoethanol, the major trichocyst bands are those of G1 and bands at 32.5–35 kD and 41 kD, which appear to be dimers of a few of the G3 proteins. On two-dimensional gels of trichocysts, ?40 acidic protein spots are resolved with pI's of 4.6–6.6. On Western blots of two-dimensional gels, glycoproteins were revealed by Concavalin A-peroxidase labeling in three spots of G3, in two spots at 23 kD, in all five spots of G1, and in seven spots over 35 kD.  相似文献   

4.
A practical method to estimate binding free energy, ΔGbind, of a given ligand structure to the target receptor has been developed. The method assumes that ΔGbind is given by the summation of intermolecular interaction energy, ΔGinter, and partial desolvation energy, ΔGdesolv. ΔGdesolv is calculated from the buried surface area in the complex between the ligand and receptor, based on solvation energy, ΔGsolv, formulated by an equation which can be calibrated with observed values. Then, the method was applied to arabinose-binding protein (ABP) and dihydrofolate reductase (DHFR), after recalibrating the weights for ΔGinter and each term of ΔGdesolv using observed ΔGbind data for 29 known ligands to avidin (AV). The usefulness of our method was confirmed by the fact that correlation coefficients between the calculated and observed ΔGbind's in AV, ABP and DHFR were 0.92, 0.77, and 0.88, whereas the corresponding values obtained by simple force field calculation were 0.79, 0.30, and 0.79, respectively. Further investigations to improve the method and validate the parameters are in progress. Proteins 33:62–73, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
6.
7.
8.
Cyclin D1 (CCND1), a mediator of cell cycle control, has a G870A polymorphism which results in the formation of two splicing variants: full-length CCND1 (CCND1a) and C-terminally truncated CCND1 species (CCND1b). However, the role of CCND1a and CCND1b variants in cancer chemoresistance remains unknown. Therefore, this study aimed to explore the molecular mechanism of alternative splicing of CCND1 in breast cancer (BC) chemoresistance. To address the contribution of G870A polymorphism to the production of CCND1 variants in BC chemoresistance, we sequenced the G870A polymorphism and analysed the expressions of CCND1a and CCND1b in MCF-7 and MCF-7/ADM cells. In comparison with MCF-7 cells, MCF-7/ADM cells with the A allele could enhance alternative splicing with the increase of SC-35, upregulate the ratio of CCND1b/a at both mRNA and protein levels, and activate the CDK4/CyclinD1-pRB-E2F1 pathway. Furthermore, CCND1b expression and the downstream signalling pathway were analysed through Western blotting and cell cycle in MCF-7/ADM cells with knockdown of CCND1b. Knockdown of CCND1b downregulated the ratio of CCND1b/a, demoted cell proliferation, decelerated cell cycle progression, inhibited the CDK4/CyclinD1-pRB-E2F1 pathway and thereby decreased the chemoresistance of MCF-7/ADM cells. Finally, CCND1 G870A polymorphism, the alternative splicing of CCDN1 was detected through Sequenom Mass ARRAY platform, Sanger sequencing, semi-quantitative RT-PCR, Western blotting and immunohistochemistry in clinical BC specimens. The increase of the ratio of CCND1b/a caused by G870A polymorphism was involved in BC chemoresistance. Thus, these findings revealed that CCND1b/a ratio caused by the polymorphism is involved in BC chemoresistance via CDK4/CyclinD1-pRB-E2F1 pathway.  相似文献   

9.
Abstract. Objectives: This article is to study the role of G1/S regulators in differentiation of pluripotent embryonic cells. Materials and methods: We established a P19 embryonal carcinoma cell‐based experimental system, which profits from two similar differentiation protocols producing endodermal or neuroectodermal lineages. The levels, mutual interactions, activities, and localization of G1/S regulators were analysed with respect to growth and differentiation parameters of the cells. Results and Conclusions: We demonstrate that proliferation parameters of differentiating cells correlate with the activity and structure of cyclin A/E–CDK2 but not of cyclin D–CDK4/6–p27 complexes. In an exponentially growing P19 cell population, the cyclin D1–CDK4 complex is detected, which is replaced by cyclin D2/3–CDK4/6–p27 complex following density arrest. During endodermal differentiation kinase‐inactive cyclin D2/D3–CDK4–p27 complexes are formed. Neural differentiation specifically induces cyclin D1 at the expense of cyclin D3 and results in predominant formation of cyclin D1/D2–CDK4–p27 complexes. Differentiation is accompanied by cytoplasmic accumulation of cyclin Ds and CDK4/6, which in neural cells are associated with neural outgrowths. Most phenomena found here can be reproduced in mouse embryonic stem cells. In summary, our data demonstrate (i) that individual cyclin D isoforms are utilized in cells lineage specifically, (ii) that fundamental difference in the function of CDK4 and CDK6 exists, and (iii) that cyclin D–CDK4/6 complexes function in the cytoplasm of differentiated cells. Our study unravels another level of complexity in G1/S transition‐regulating machinery in early embryonic cells.  相似文献   

10.
Prolyl oligopeptidase (POP) is a post-proline cleaving enzyme, which is widely distributed in various organs, with high levels in the brain. In this study, we investigated the effects of a selective POP inhibitor, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746), on the growth of NB-1 human neuroblastoma cells. SUAM-14746 treatment for 24–72 h suppresses the growth of NB-1 cells without cell death in a dose-dependent manner (10–60 μM). Similar suppressive effects were observed with another POP inhibitor benzyloxycarbonyl-thioprolyl-thioprolinal. The SUAM-14746-induced growth inhibition in NB-1 cells was associated with pronounced G0/G1 arrest and reduced levels of phosphorylated retinoblastoma protein (pRb), cyclin E, and cyclin dependent kinase (CDK) 2, and increased levels of the CDK inhibitor p27kip1 and the tumor suppressor p53. SUAM-14746 also induced transient inhibition of S and G2/M phase progression, which was correlated with retardation of the decrease in the levels of cyclins A and B. Moreover, RNAi-mediated knockdown of POP also led to inhibition of NB-1 cell growth and the effect was accompanied by G0/G1 arrest. These results indicate that POP is a part of the machinery that controls the cell cycle.  相似文献   

11.
The effect of common intracellular signals (Ca2+ and cAMP) on the activity of protein phosphorylation in mitochondria was investigated in coleoptiles of maize (Zea mays L.). Treatment of isolated mitochondria with 2 mM CaCl2 brought about an increase in the level of phosphorylation of proteins with mol ws of 74, 60, and 33 kD but considerably reduced phosphorylation of the protein with a mol wt of 51.5 kD. In the presence of Ca2+, phosphorylation of polypeptides with mol wts of 59 and 66 kD was also detected. cAMP considerably reduced phosphorylation of essentially all the investigated proteins in isolated mitochondria, which could be explained by activation of their dephosphorylation. Phosphorylation of mitochondrial proteins involves a polypeptide of about 94 kD showing kinase activity, which may be proper protein kinase or one of the subunits of a compound structure. In maize mitochondria, PP1A phosphatases were found. A hypothesis was advanced that redox-dependent phosphorylation/dephosphorylation of mitochondrial proteins plays an important role in mitochondrial signaling in higher plants.  相似文献   

12.
13.
Relapse with drug-resistant disease is the main cause of death in MYCN-amplified neuroblastoma patients. MYCN-amplified neuroblastoma cells in vitro are characterized by a failure to arrest at the G?-S checkpoint after irradiation- or drug-induced DNA damage. We show that several MYCN-amplified cell lines harbor additional chromosomal aberrations targeting p53 and/or pRB pathway components, including CDK4/CCND1/MDM2 amplifications, p16INK4A/p14ARF deletions or TP53 mutations. Cells with these additional aberrations undergo significantly lower levels of cell death after doxorubicin treatment compared with MYCN-amplified cells, with no additional mutations in these pathways. In MYCN-amplified cells CDK4 expression is elevated, increasing the competition between CDK4 and CDK2 for binding p21. This results in insufficient p21 to inhibit CDK2, leading to high CDK4 and CDK2 kinase activity upon doxorubicin treatment. CDK4 inhibition by siRNAs, selective small compounds or p19INK4D overexpression partly restored G?-S arrest, delayed S-phase progression and reduced cell viability upon doxorubicin treatment. Our results suggest a specific function of p19INK4D, but not p16INK4A, in sensitizing MYCN-amplified cells with a functional p53 pathway to doxorubicin-induced cell death. In summary, the CDK4/cyclin D-pRB axis is altered in MYCN-amplified cells to evade a G?-S arrest after doxorubicin-induced DNA damage. Additional chromosomal aberrations affecting the p53-p21 and CDK4-pRB axes compound the effects of MYCN on the G? checkpoint and reduce sensitivity to cell death after doxorubicin treatment. CDK4 inhibition partly restores G?-S arrest and sensitizes cells to doxorubicin-mediated cell death in MYCN-amplified cells with an intact p53 pathway.  相似文献   

14.
15.
16.
Abstract: The identity and role of G proteins in coupling adenosine receptors to effectors have been studied to a limited degree. We have identified the G proteins whose GTPase activity is stimulated by adenosine receptor agonists in neuronal membranes. (R)-Phenylisopropyladenosine, 2-chloroadenosine, and N-ethylcarboxamideadenosine produced a concentration-dependent stimulation of GTPase. At 10?5M, the increase above basal GTPase in frontal cortex was 25 ± 4, 20 ± 3, and 8 ± 1%, respectively, and in the cerebellum 55 ± 2, 41 ± 4, and 22 ± 2%, respectively. The effects of (R)-phenylisopropyladenosine and 2-chloroadenosine were inhibited by (1) A1 antagonists (76–96% reduction), (2) pretreatment with pertussis toxin (90–100% reduction), and (3) antibodies raised against the α-subunit of Gi and Go (55–57% reduction by each), suggesting that A1 receptors interact equally with Gi and Go. (R)-Phenylisopropyladenosine increased the binding of a nonhydrolyzable analogue of GTP to membranes in a pertussis toxin-sensitive manner, indicative of activation of Gi or Go. Previously, (±)-Bay K 8644 enhanced GTP hydrolysis by Go but not Gi. Now we report a profound synergistic stimulation of GTPase in the presence of (R)-phenylisopropyladenosine and (±)-Bay K 8644 (10?7 to 10?5M). (±)-Bay K 8644 had no effect on nucleotide exchange and, thus, cannot activate Go. It appears that a positive cooperative stimulation of Go occurs when it is first activated by A1 receptors and subsequently interacts with the L-type Ca2+ channel.  相似文献   

17.
18.
Cell cycle is maintained almost all the times and is controlled by various regulatory proteins and their complexes (Cdk+Cyclin) in different phases of interphase (G1, S and G2) and mitosis of cell cycle. A number of mechanisms have been proposed for the initiation and progression of carcinogenesis by abruption in cell cycle process. One of the important features of cancer/carcinogenesis is functional loss of these cell cycle regulatory proteins particularly in CDKs and cyclins. We hypothesize that there is a direct involvement of these cell cycle regulatory proteins not only at the genetic level but also proteins level, during the initiation of carcinogenesis. Therefore, it becomes significant to determine inconsistency in the functioning of regulatory proteins due to interaction with carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Hence, we investigated the interaction efficiency of NNK, against cell cycle regulatory proteins. We found a different value of ΔG (free energy of binding) among the studied proteins ranging between -3.29 to -7.25 kcal/mol was observed. To validate the results, we considered Human Oxy-Hemoglobin at 1.25 Å Resolution, [PDB_ID:1HHO] as a +ve control, (binding energy -6.06 kcal/mol). Finally, the CDK8 (PDB_ID:3RGF) and CDK2 (PDB_ID:3DDP) regulatory proteins showing significantly strong molecular interaction with NNK -7.25 kcal/mol, -6.19 kcal/mol respectively were analyzed in details. In this study we predicted that CDK8 protein fails to form functional complex with its complementary partner cyclin C in presence of NNK. Consequently, inconsistency of functioning in regulatory proteins might lead to the abruption in cell cycle progression; contribute to the loss of cell cycle control and subsequently increasing the possibility of carcinogenesis.  相似文献   

19.
Many macromolecular interactions, including protein‐nucleic acid interactions, are accompanied by a substantial negative heat capacity change, the molecular origins of which have generated substantial interest. We have shown previously that temperature‐dependent unstacking of the bases within oligo(dA) upon binding to the Escherichia coli SSB tetramer dominates the binding enthalpy, ΔHobs, and accounts for as much as a half of the observed heat capacity change, ΔCp. However, there is still a substantial ΔCp associated with SSB binding to ssDNA, such as oligo(dT), that does not undergo substantial base stacking. In an attempt to determine the origins of this heat capacity change, we have examined by isothermal titration calorimetry (ITC) the equilibrium binding of dT(pT)34 to SSB over a broad pH range (pH 5.0–10.0) at 0.02 M, 0.2 M NaCl and 1 M NaCl (25°C), and as a function of temperature at pH 8.1. A net protonation of the SSB protein occurs upon dT(pT)34 binding over this entire pH range, with contributions from at least three sets of protonation sites (pKa1 = 5.9–6.6, pKa2 = 8.2–8.4, and pKa3 = 10.2–10.3) and these protonation equilibria contribute substantially to the observed ΔH and ΔCp for the SSB‐dT(pT)34 interaction. The contribution of this coupled protonation (∼ −260 to −320 cal mol−1 K−1) accounts for as much as half of the total ΔCp. The values of the “intrinsic” ΔCp,0 range from −210 ± 33 cal mol−1 °K−1 to −237 ± 36 cal mol−1K−1, independent of [NaCl]. These results indicate that the coupling of a temperature‐dependent protonation equilibria to a macromolecular interaction can result in a large negative ΔCp, and this finding needs to be considered in interpretations of the molecular origins of heat capacity changes associated with ligand‐macromolecular interactions, as well as protein folding. Proteins 2000;Suppl 4:8–22. © 2000 Wiley‐Liss, Inc.  相似文献   

20.
Hog1 of Saccharomyces cerevisiae is activated by hyperosmotic stress, and this leads to cell-cycle delay in G1, but the mechanism by which cells restart from G1 delay remains elusive. We found that Whi3, a negative regulator of G1 cyclin, counteracted Hog1 in the restart from G1 delay caused by osmotic stress. We have found that phosphorylation of Ser-568 in Whi3 by RAS/cAMP-dependent protein kinase (PKA) plays an inhibitory role in Whi3 function. In this study we found that the phosphomimetic Whi3 S568D mutant, like the Δwhi3 strain, slightly suppressed G1 delay of Δhog1 cells under osmotic stress conditions, whereas the non-phosphorylatable S568A mutation of Whi3 caused prolonged G1 arrest of Δhog1 cells. These results indicate that Hog1 activity is required for restart from G1 arrest under osmotic stress conditions, whereas Whi3 acts as a negative regulator for this restart mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号