首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Programmed cell death (PCD) is utilized in a wide variety of tissues to refine structure in developing tissues and organs. However, little is understood about the mechanisms that, within a developing epithelium, combine signals to selectively remove some cells while sparing essential neighbors. One popular system for studying this question is the developing Drosophila pupal retina, where excess interommatidial support cells are removed to refine the patterned ommatidial array. In this paper, we present data indicating that PCD occurs earlier within the pupal retina than previously demonstrated. As with later PCD, this death is dependent on Notch activity. Surprisingly, altering Drosophila Epidermal Growth Factor Receptor or Ras pathway activity had no effect on this death. Instead, our evidence indicates a role for Wingless signaling to provoke this cell death. Together, these signals regulate an intermediate step in the selective removal of unneeded interommatidial cells that is necessary for a precise retinal pattern.  相似文献   

3.
S. Liu  E. McLeod    J. Jack 《Genetics》1991,127(1):151-159
The cut gene in Drosophila is necessary in at least one cell type, the external sensory organs, for proper cell type specification and morphogenesis. It is also expressed in a variety of other tissues, where its function is less well characterized. Previous work has demonstrated that mutations affecting all the tissues map in the transcribed and translated portion of the gene, while mutations that are tissue specific in their effects map in the 140 kb upstream of the most 5' exon known. Within that 140 kb, the mutations fall into four subregions, two of which contain mutations affecting unique sets of tissues and the other two of which contain mutations that affect a third set. Our examination of the defects of mutants, their complementation behavior, and their effect on the distribution of the cut protein in embryos, alters the picture in three important ways. First, some mutations convert the cells of the Malpighian tubules into what appear to be gut cells, suggesting that cut is necessary for cell type specification and morphogenesis in a variety of tissues. Second, mutations in each of the four subregions in the 140 kb of upstream DNA cause a different set of phenotypes, suggesting that the regulatory region contains at least four separate units with different tissue specific functions. And third, mutations have now been identified that map in the transcribed and translated portion of the gene but that have tissue specific effects.  相似文献   

4.
As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.  相似文献   

5.
Julie Gates 《Fly》2012,6(4):213-227
As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.  相似文献   

6.
Steroid hormones play an important role in the regulation of numerous physiological responses, but the mechanisms that enable these systemic signals to trigger specific cell changes remain poorly characterized. Recent studies of Drosophila illustrate several important features of steroid-regulated programmed cell death. A single steroid hormone activates both cell differentiation and cell death in different tissues and at multiple stages during development. While several steroid-regulated genes are required for cell execution, most of these genes function in both cell differentiation and cell death, and require more specific factors to kill cells. Genes that regulate apoptosis during Drosophila embryogenesis are induced by steroids in dying cells later in development. These apoptosis genes likely function downstream of hormone-induced factors to serve a more direct role in the death response. This article reviews the current knowledge of steroid signaling and the regulation of programmed cell death during development of Drosophila.  相似文献   

7.
Studies performed in Drosophila melanogaster embryos and larvae provide crucial insight into developmental processes such as cell fate specification and organogenesis. Immunostaining allows for the visualization of developing tissues and organs. However, a protective cuticle that forms at the end of embryogenesis prevents permeation of antibodies into late-stage embryos and larvae. While dissection prior to immunostaining is regularly used to analyze Drosophila larval tissues, it proves inefficient for some analyses because small tissues may be difficult to locate and isolate. Sonication provides an alternative to dissection in larval Drosophila immunostaining protocols. It allows for quick, simultaneous processing of large numbers of late-stage embryos and larvae and maintains in situ morphology. After fixation in formaldehyde, a sample is sonicated. Sample is then subjected to immunostaining with antigen-specific primary antibodies and fluorescently labeled secondary antibodies to visualize target cell types and specific proteins via fluorescence microscopy. During the process of sonication, proper placement of a sonicating probe above the sample, as well as the duration and intensity of sonication, is critical. Additonal minor modifications to standard immunostaining protocols may be required for high quality stains. For antibodies with low signal to noise ratio, longer incubation times are typically necessary. As a proof of concept for this sonication-facilitated protocol, we show immunostains of three tissue types (testes, ovaries, and neural tissues) at a range of developmental stages.  相似文献   

8.
LRIG1 protein in human cells and tissues   总被引:6,自引:0,他引:6  
We have recently cloned the human LRIG1 gene (formerly LIG1). LRIG1 is a predicted integral cell-surface protein showing similarities to Kekkon-1, the Drosophila melanogaster epidermal growth-factor-receptor antagonist. A specific peptide antibody, LRIG1-151, was raised in rabbits and used to study the LRIG1 protein. LRIG1 migrated in denaturing polyacrylamide gel electrophoresis under reducing conditions as two species with apparent molecular weights of 143 kDa and 134 kDa, and as two fragments corresponding to an N-terminal 111-kDa species and a C-terminal 32-kDa species. Under non-reducing conditions, both apparent monomers and apparent higher molecular weight complexes were evident. Immunoblotting analysis of cell-surface-biotinylated lysates and confocal microscopy revealed that LRIG1 was localized to the cell surface in ZR-75 cells expressing endogenous LRIG1 and in COS-7 cells expressing a synthetic LRIG1-GFP fusion protein. Immunohistochemical analysis of normal human tissues showed staining for LRIG1 in epithelia in various organs, scattered neurons, and muscles. Immunoblotting demonstrated LRIG1 protein in tissue lysates from normal human prostate, mammary epithelial cells, ileum, stomach, lung, and cerebral cortex. These results demonstrate that LRIG1 is an integral cell-surface membrane protein that is expressed by specific cells in various human tissues and that its 143-kDa form might be cleaved into 111-kDa and 32-kDa fragments.  相似文献   

9.
Nitric oxide and Drosophila development   总被引:7,自引:0,他引:7  
Mechanisms controlling the transition of precursor cells from proliferation to differentiation during organism development determine the distinct anatomical features of tissues and organs. NO may mediate such a transition since it can suppress DNA synthesis and cell proliferation. Inhibition of NOS activity in the imaginal discs of Drosophila larvae results in hypertrophy of tissues and organs of the adult fly, whereas ectopic overexpression of NOS has the reciprocal, hypotrophic, effect. Furthermore, NO production is crucial for the establishment of ordered neuronal connections in the visual system of the fly, indicating that NO affects the acquisition of the differentiated phenotype by the neural tissue. Increasing evidence points to a broad role that NO may play in animal development by acting as an essential negative regulator of precursor cell proliferation during tissue and organ morphogenesis.  相似文献   

10.
Drosophila proprioceptors (chordotonal organs) are structured as a linear array of four lineage-related cells: a neuron, a glial cell, and two accessory cells, called cap and ligament, between which the neuron is stretched. To function properly as stretch receptors, chordotonal organs must be stably anchored at both edges. The cap cells are anchored to the cuticle through specialized lineage-related attachment cells. However, the mechanism by which the ligament cells at the other edge of the organ attach is not known. Here, we report the identification of specialized attachment cells that anchor the ligament cells of pentascolopidial chordotonal organs (lch5) to the cuticle. The ligament attachment cells are recruited by the approaching ligament cells upon reaching their attachment site, through an EGFR-dependent mechanism. Molecular characterization of lch5 attachment cells demonstrated that they share significant properties with Drosophila tendon cells and with mammalian proprioceptive organs.  相似文献   

11.
12.
Direct communication of neighboring cells by gap junction channels is essential for the development of tissues and organs in the body. Whereas vertebrate gap junctions are composed of members of the connexin family of transmembrane proteins, in invertebrates gap junctions consist of Innexin channel proteins. Innexins display very low sequence homology to connexins. In addition, very little is known about their cellular role during developmental processes. In this report, we examined the function and the distribution of Drosophila Innexin 2 protein in embryonic epithelia. Both loss-of-function and gain-of-function innexin 2 mutants display severe developmental defects due to cell death and a failure of proper epithelial morphogenesis. Furthermore, immunohistochemical analyses using antibodies against the Innexins 1 and 2 indicate that the distribution of Innexin gap junction proteins to specific membrane domains is regulated by tissue specific factors. Finally, biochemical interaction studies together with genetic loss- and gain-of-function experiments provide evidence that Innexin 2 interacts with core proteins of adherens and septate junctions. This is the first study, to our knowledge, of cellular distribution and protein-protein interactions of an Innexin gap junctional channel protein in the developing epithelia of Drosophila.  相似文献   

13.
Larval RNAi in Drosophila?   总被引:2,自引:0,他引:2  
RNA interference (RNAi) has become a common method of gene knockdown in many model systems. To trigger an RNAi response, double-stranded RNA (dsRNA) must enter the cell. In some organisms such as Caenorhabditis elegans, cells can take up dsRNA from the extracellular environment via a cellular uptake mechanism termed systemic RNAi. However, in the fruit fly Drosophila melanogaster, it is widely believed that cells are unable to take up dsRNA, although there is little published data to support this claim. In this study, we set out to determine whether this perception has a factual basis. We took advantage of traditional Gal4/upstream activation sequence (UAS) transgenic flies as well as the mosaic analysis with a repressible cell marker (MARCM) system to show that extracellular injection of dsRNA into Drosophila larvae cannot trigger RNAi in most Drosophila tissues (with the exception of hemocytes). Our results show that this is not due to a lack of RNAi machinery in these tissues as overexpression of dsRNA inside the cells using hairpin RNAs efficiently induces an RNAi response in the same tissues. These results suggest that, while most Drosophila tissues indeed lack the ability to uptake dsRNA from the surrounding environment, hemocytes can initiate RNAi in response to extracellular dsRNA. We also examined another insect, the red flour beetle Tribolium castaneum, which has been shown to exhibit a robust systemic RNAi response. We show that virtually all Tribolium tissues can respond to extracellular dsRNA, which is strikingly different from the situation in Drosophila. Our data provide specific information about the tissues amenable to RNAi in two different insects, which may help us understand the molecular basis of systemic RNAi.  相似文献   

14.
Our purpose is to assess the effects of lethal alleles of engrailed on cells of the internal organs of Drosophila. Using nuclear transplantation we make mosaic flies that contain regions made by engrailed-lethal cells that are genetically labelled. We find that engrailed-lethal cells cause defects in some parts of the epidermis and central nervous system. Most of the internal organs of the fly are assessed and of those, all organs and tissues derived from the endoderm or the splanchnic and somatic mesoderm are normal; flies carrying engrailed-lethal cells in large areas of these organs are viable. We postulate that segments of the mesoderm are single units of cell lineage and that, unlike the ectoderm, they are not subdivided into anterior and posterior compartments.  相似文献   

15.
Schneider M  Baumgartner S 《Fly》2008,2(1):29-35
Dystroglycan (DG) is a widely expressed extracellular matrix (ECM) receptor required for muscle viability, synaptogenesis, basement-membrane formation and epithelial development. As an integral component of the Dystrophin-associated glycoprotein complex, DG plays a central role in linking the ECM and the cytoskeleton. Disruption of this linkage in skeletal muscle is the underlying cause in various types of muscular dystrophies (MD). One particular type of MD is caused by alterations of O-linked glycosylation in the mucin-like domain of DG, which is required for binding of the ECM molecules Laminin and Perlecan. In epithelial cells, reduced expression of DG is associated with increased invasiveness of cancer cells and loss of cell polarity. Drosophila Dg is, in contrast to vertebrate Dg, subjected to differential splicing of the mRNA. Interestingly, the shorter DG splice forms lack the mucin?like domain. Here, we describe the embryonic expression patterns of full-length DG and a short variant of DG. We find that differential splicing of Dg is developmentally regulated and tissue-specific. In some tissues, e.g., hindgut, midgut constrictions, gonads, both DG variants can be detected. For the long form, we detected specific expression at the blastoderm stage, in the epidermis and in the tracheal pits. The short form showed exclusive expression in dorsal vessel cells, chordotonal organs and dorsal median cells. In the nervous system, the long form is predominantly expressed on axons, while the short form is present on glial cells. Our findings further support the idea that DG forms lacking the mucin-like domain serve a specific function in Drosophila.  相似文献   

16.
One of the most challenging problems in biology resides in unraveling the molecular mechanisms, hardwired in the genome, that define and regulate the multiscale tridimensional organization of organs, tissues and individual cells. While works in cultured cells have revealed the importance of cytoskeletal networks for cell architecture, in vivo models are now required to explore how such a variety in cell shape is produced during development, in interaction with neighboring cells and tissues. The genetic analysis of epidermis development in Drosophila has provided an unbiased way to identify mechanisms remodeling the shape of epidermal cells, to form apical trichomes during terminal differentiation. Since hearing in vertebrates relies on apical cell extensions in sensory cells of the cochlea, called stereocilia, the mapping of human genes causing hereditary deafness has independently identified several factors required for this peculiar tridimensional organization. In this review, we summarized recent results obtained toward the identification of genes involved in these localized changes in cell shape and discuss their evolution throughout developmental processes and species.  相似文献   

17.
Tian E  Ten Hagen KG 《Glycobiology》2007,17(8):820-827
Mucin-type O-linked glycosylation is an evolutionarily conserved protein modification that is essential for viability in Drosophila melanogaster. However, the exact role of O-glycans and the identity of the crucial apoproteins modified with O-linked N-acetylgalactosamine (O-GalNAc) remain unknown. In an effort to elucidate the O-linked glycans expressed during Drosophila development, we have employed fluorescent confocal microscopy using a battery of lectins and an antibody specific for the GalNAcalpha-Ser/Thr structure (Tn antigen). Confocal microscopy provides high-resolution images of the diversity of glycans expressed in many developing organ systems. In particular, O-glycans are highly expressed on a number of ectodermally derived tissues such as the salivary glands, developing gut, and the tracheal system, suggesting a role for O-glycans in cell polarity and tube formation common to these organs. Additionally, O-glycans are found in the developing nervous system and within subregions of developing tissues known to be active in cell signaling events. This study provides us with temporal and spatial information regarding O-glycan expression as well as a set of reagents for the isolation of glycoproteins from specific developmental stages and organ systems. This information will aid us in identifying the in vivo substrates of the UDP-GalNAc: polypeptide N-acetylgalactosaminyltranferases, in a continuing effort to define the biological role of O-linked glycoproteins during development.  相似文献   

18.
Tube formation is a ubiquitous process required to sustain life in multicellular organisms. The tubular organs of adult mammals include the lungs, vasculature, digestive and excretory systems, as well as secretory organs such as the pancreas, salivary, prostate, and mammary glands. Other tissues, including the embryonic heart and neural tube, have requisite stages of tubular organization early in development. To learn the molecular and cellular basis of how epithelial cells are organized into tubular organs of various shapes and sizes, investigators have focused on the Drosophila trachea and salivary gland as model genetic systems for branched and unbranched tubes, respectively. Both organs begin as polarized epithelial placodes, which through coordinated cell shape changes, cell rearrangement, and cell migration form elongated tubes. Here, we discuss what has been discovered regarding the details of cell fate specification and tube formation in the two organs; these discoveries reveal significant conservation in the cellular and molecular events of tubulogenesis.  相似文献   

19.
Cell to cell communication plays an essential role during pattern formation and morphogenesis of the diverse tissues and organs of the body. In invertebrates, such as the fruitfly Drosophila, the direct communication of closely apposed cells is mediated by gap junctions which are composed of oligomers of the innexin family of transmembrane channel proteins. Few data exist about the developmental role of the eight innexin genes which have been found in the Drosophila genome. We have investigated the role of the innexin 2 and ogre genes during gastrointestinal development of the fly embryo. Our findings suggest that innexins are involved in the formation of the proventriculus, an organ that develops at the foregut/midgut boundary by migration of primordial cells and subsequent infolding of epithelial tissue layers.  相似文献   

20.
Cell to cell communication plays an essential role during pattern formation and morphogenesis of the diverse tissues and organs of the body. In invertebrates, such as the fruitfly Drosophila, the direct communication of closely apposed cells is mediated by gap junctions which are composed of oligomers of the innexin family of transmembrane channel proteins. Few data exist about the developmental role of the eight innexin genes which have been found in the Drosophila genome. We have investigated the role of the innexin 2 and ogre genes during gastrointestinal development of the fly embryo. Our findings suggest that innexins are involved in the formation of the proventriculus, an organ that develops at the foregut/midgut boundary by migration of primordial cells and subsequent infolding of epithelial tissue layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号