共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhuoru Wu Katherine Luby-Phelps Abhijit Bugde Laura A. Molyneux Bray Denard Wen-Hong Li Gürol M. Süel David L. Garbers 《The Journal of cell biology》2009,187(4):513-524
Mammalian spermatogenesis is initiated and sustained by spermatogonial stem cells (SSCs) through self-renewal and differentiation. The basic question of whether SSCs have the potential to specify self-renewal and differentiation in a cell-autonomous manner has yet to be addressed. Here, we show that rat SSCs in ex vivo culture conditions consistently give rise to two distinct types of progeny: new SSCs and differentiating germ cells, even when they have been exposed to virtually identical microenvironments. Quantitative experimental measurements and mathematical modeling indicates that fate decision is stochastic, with constant probability. These results reveal an unexpected ability in a mammalian SSC to specify both self-renewal and differentiation through a self-directed mechanism, and further suggest that this mechanism operates according to stochastic principles. These findings provide an experimental basis for autonomous and stochastic fate choice as an alternative strategy for SSC fate bifurcation, which may also be relevant to other stem cell types. 相似文献
2.
3.
精原干细胞自我更新和分化的调控 总被引:1,自引:0,他引:1
精原干细胞(spermatogonial stem cells,SSCs)是体内自然状态下惟一能将遗传信息传至子代的成体干细胞,它们能通过维持自我更新和分化的稳定从而保证雄性生命过程中精子发生的持续进行。了解SSCs自我更新和分化的调节机制有助于阐明精子发生机理,并为探究其他组织中成体干细胞增殖分化的调节机制提供依据。然而目前对于SSCs自我更新和分化的调控机制所知甚少。SSCs的更新与分化遵循特定模式,受以睾丸支持细胞为主要成分的微环境及各种内分泌因素如胶质细胞源神经营养因子(GDNF)、维生素、Ets转录因子ERM/Etv5等的调控。本文评述了SSCs更新与分化的模式以及上述因素对其更新、分化的调控,探讨了其中可能涉及的信号通路,以期为本领域及其他成体干细胞相关研究提供借鉴。 相似文献
4.
5.
Neural stem cells: balancing self-renewal with differentiation 总被引:3,自引:0,他引:3
Doe CQ 《Development (Cambridge, England)》2008,135(9):1575-1587
Stem cells are captivating because they have the potential to make multiple cell types yet maintain their undifferentiated state. Recent studies of Drosophila and mammalian neural stem cells have shed light on how stem cells regulate self-renewal versus differentiation and have revealed the proteins, processes and pathways that all converge to regulate neural progenitor self-renewal. If we can better understand how stem cells balance self-renewal versus differentiation, we will significantly advance our knowledge of embryogenesis, cancer biology and brain evolution, as well as the use of stem cells for therapeutic purposes. 相似文献
6.
7.
Germline stem (GS) cells were established from gonocytes and spermatogonia of postnatal mouse testes. GS cells proliferate in the presence of several kinds of cytokines, and a small percentage of GS cells also show spermatogonial stem cell (SSC) activity, i.e., they differentiate into sperm after being transplanted into infertile mouse testes without endogenous spermatogenesis. Interestingly, in GS cell culture, we also found that pluripotent stem cells (multipotent germline stem cells (mGS cells)) could be derived and these mGS cells do not have normal androgenetic genomic imprinting marks that are shown in GS cells, e.g., H19 hypermethylation. A new culture system for fetal male germ cells (embryonic GS (eGS) cells) has also been recently developed. Although these cells exhibited SSC potential, the offspring from cultured cells showed heritable imprinting defects in their DNA methylation patterns. In an attempt to understand the self-renewal machinery in SSCs, we transfected H-Ras and cylin D2 into GS cells, and successfully reconstructed the SSC self-renewal ability without using exogenous cytokines. Although these cells showed SSC activity in germ cell transplantation assays, we also found development of seminomatous tumors, possibly induced by excessive self-renewing signal. These stem cell culture systems are useful tools not only for understanding the mechanisms of self-renewal or epigenetic reprogramming but also for clarifying the mechanism of germ cell tumor development. 相似文献
8.
Gómez-Nicola D Valle-Argos B Pallas-Bazarra N Nieto-Sampedro M 《Molecular biology of the cell》2011,22(12):1960-1970
The impact of inflammation is crucial for the regulation of the biology of neural stem cells (NSCs). Interleukin-15 (IL-15) appears as a likely candidate for regulating neurogenesis, based on its well-known mitogenic properties. We show here that NSCs of the subventricular zone (SVZ) express IL-15, which regulates NSC proliferation, as evidenced by the study of IL-15-/- mice and the effects of acute IL-15 administration, coupled to 5-bromo-2'-deoxyuridine/5-ethynyl-2'-deoxyuridine dual-pulse labeling. Moreover, IL-15 regulates NSC differentiation, its deficiency leading to an impaired generation of neuroblasts in the SVZ-rostral migratory stream axis, recoverable through the action of exogenous IL-15. IL-15 expressed in cultured NSCs is linked to self-renewal, proliferation, and differentiation. IL-15-/- NSCs presented deficient proliferation and self-renewal, as evidenced in proliferation and colony-forming assays and the analysis of cell cycle-regulatory proteins. Moreover, IL-15-deficient NSCs were more prone to differentiate than wild-type NSCs, not affecting the cell population balance. Lack of IL-15 led to a defective activation of the JAK/STAT and ERK pathways, key for the regulation of proliferation and differentiation of NSCs. The results show that IL-15 is a key regulator of neurogenesis in the adult and is essential to understanding diseases with an inflammatory component. 相似文献
9.
Embryonic stem cells: proliferation and differentiation 总被引:6,自引:0,他引:6
A Bradley 《Current opinion in cell biology》1990,2(6):1013-1017
10.
11.
Haematopoietic stem cells (HSCs) are capable of shifting from a state of relative quiescence under homeostatic conditions to rapid proliferation under conditions of stress. The mechanisms that regulate the relative quiescence of stem cells and its association with self-renewal are unclear, as is the contribution of molecular regulators of the cell cycle to these decisions. Understanding the mechanisms that govern these transitions will provide important insights into cell-cycle regulation of HSCs and possible therapeutic approaches to expand HSCs. We have investigated the role of two negative regulators of the cell cycle, p27(Kip1) and MAD1, in controlling this transition. Here we show that Mad1(-/-)p27(Kip1-/-) bone marrow has a 5.7-fold increase in the frequency of stem cells, and surprisingly, an expanded pool of quiescent HSCs. However, Mad1(-/-)p27(Kip1-/-) stem cells exhibit an enhanced proliferative response under conditions of stress, such as cytokine stimulation in vitro and regeneration of the haematopoietic system after ablation in vivo. Together these data demonstrate that the MYC-antagonist MAD1 and cyclin-dependent kinase inhibitor p27(Kip1) cooperate to regulate the self-renewal and differentiation of HSCs in a context-dependent manner. 相似文献
12.
13.
14.
The role of growth factors in self-renewal and differentiation of haemopoietic stem cells 总被引:6,自引:0,他引:6
T M Dexter C M Heyworth E Spooncer I L Ponting 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1990,327(1239):85-98
Haemopoietic stem cells in vivo proliferate and develop in association with stromal cells of the bone marrow. Proliferation and differentiation of haemopoietic stem cells also occurs in vitro, either in association with stromal cells or in response to soluble growth factors. Many of the growth factors that promote growth and development of haemopoietic cells in vitro have now been molecularly cloned and purified to homogeneity and various techniques have been described that allow enrichment (to near homogeneity) of multipotential stem cells. This in turn, has facilitated studies at the mechanistic level regarding the role of such growth factors in self-renewal and differentiation of stem cells and their relevance in stromal-cell mediated haemopoiesis. Our studies have shown that at least some multipotential cells express receptors for most, if not all, of the haemopoietic cell growth factors already characterized and that to elicit a response, several growth factors often need to be present at the same time. Furthermore, lineage development reflects the stimuli to which the cells are exposed, that is, some stimuli promote differentiation and development of multipotential cells into multiple cell lineages, whereas others promote development of multipotential cell into only one cell lineage. We suggest that, in the bone marrow environment, the stromal cells produce or sequester different types of growth factors, leading to the formation of microenvironments that direct cells along certain lineages. Furthermore, a model system has been used to show the possibility that the self-renewal probability of multipotential cells can also be modulated by the range and concentrations of growth factors present in the environment. This suggests that discrete microenvironments, preferentially promoting self-renewal rather than differentiation of multipotential cells, may also be provided by marrow stromal cells and sequestered growth factors. 相似文献
15.
16.
17.
18.
Jianchang Yang Jerell R Aguila Zaida Alipio Raymond Lai Louis M Fink Yupo Ma 《Journal of hematology & oncology》2011,4(1):1-14
We reviewed preclinical data and clinical development of MDM2 (murine double minute 2), ALK (anaplastic lymphoma kinase) and PARP (poly [ADP-ribose] polymerase) inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC). Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation. 相似文献
19.
Tala Mohsen-Kanson Anne-Laure Hafner Brigitte Wdziekonski Phi Villageois Bérengère Chignon-Sicard Christian Dani 《Biochemical and biophysical research communications》2013,430(3):871-875
Human adipose-derived stem cell populations express cell surface markers such as CD105, CD73, CD146 and CD140a/PDFGRα. However, it was unclear whether these markers could discriminate subpopulations of undifferentiated cells and whether the expression of these markers is modulated during differentiation. To address this issue, we analysed the immunophenotype of cultured human multipotent adipose derived stem (hMADS) cell populations at different adipocyte differentiation steps. We found that 100% of undifferentiated cells expressed CD73 and CD105. In contrast, CD146 and CD140a/PDFGRα marked two different subpopulations of cells. CD140a/PDGFRα subpopulation was regulated by FGF2, a critical factor of human adipose-derived stem cell self-renewal. During differentiation, CD73 was maintained and marked lipid-laden cells, whereas CD105 expression was inhibited in fully differentiated cells. The percentage of CD146 and CD140a/PDFGRα-positive cells declined as soon as cells had undergone differentiation. Altogether, these data support the notion that expanded adipose-derived stem cells are heterogeneous mixtures of cells and cell surface markers studied can discriminate subpopulations. 相似文献
20.
Muscle satellite cells have been shown to be a heterogeneous population of committed myogenic progenitors and noncommitted stem cells. This hierarchical composition of differentiating progenitors and self-renewable stem cells assures the extraordinary regenerative capacity of skeletal muscles. Recent studies have revealed a role for asymmetric division in satellite cell maintenance and offer novel insights into the regulation of satellite cell function by the niche. A thorough understanding of the molecular regulation and cell fate determination of satellite cells and other potential stem cells resident in muscle is essential for successful stem cell-based therapies to treat muscular diseases. 相似文献