首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nek2 kinase, a NIMA-related kinase, has been suggested to play both meiotic and mitotic roles in mammals, but its function(s) during development is poorly understood. We have isolated here cDNAs encoding a Xenopus homolog of mammalian Nek2 and have shown that Xenopus Nek2 has two structural variants, termed Nek2A and Nek2B. Nek2A, most likely a C-terminally spliced form, corresponds to the previously described human and mouse Nek2, while Nek2B is most probably a novel, C-terminally unspliced form of Nek2. As a consequence of this (probable) alternative splicing, Nek2B lacks the C-terminal 70-amino-acid sequence of Nek2A, which contains a PEST sequence (or a motif for rapid degradation). Western blot analysis reveals that Nek2A is expressed predominantly in the testis (presumably in spermatocytes) and very weakly in the stomach and, during development, only after the neurula stage. By contrast, Nek2B is expressed mainly in the ovary and in both primary and secondary oocytes and early embryos up to the neurula stage. These results suggest that Nek2A and Nek2B may play both meiotic and mitotic roles, but in a spatially and temporally complementary manner during Xenopus development, and that Nek2B, rather than Nek2A (or the conventional form of Nek2), may play an important role in early development. We discuss the possibility that a counterpart of Xenopus Nek2B might also exist and function in early mammalian development.  相似文献   

2.
Neks (NIMA-related kinases) are mammalian serine/threonine (Ser/Thr) protein kinases structurally related to Aspergillus NIMA (Never in Mitosis, gene A), which plays essential roles in mitotic signaling. Among these kinases, Nek6 and Nek7 are structurally related and constitute a subfamily in the NIMA/Nek family, although their functions still remain almost elusive. In this report, we studied the enzymatic regulation of Nek6 and Nek7 to gain an insight into their cellular functions. Recombinant Nek7 produced in bacteria was active comparably to Nek6; however, the Nek7 activity in mammalian cells was found to be significantly lower than Nek6. Since Nek6 previously has been reported to in vitro phosphorylate p70 ribosomal S6 kinase at Thr412, we examined if Nek6 and Nek7 activities were controlled by the amino acid supplement, which is known to affect the phosphorylation at Thr412, and did not observe any significant effect. However, we unexpectedly found that Nek7 kinase activity was rapidly and efficiently increased by serum deprivation, while Nek6 activity was decreased. This is well consistent with the lower activity of Nek7 in cells under normal growth conditions. In addition, it was suggested that Nek7 activity would be regulated in a cell cycle-dependent manner, although Nek6 was not. These clear differences in enzymatic control between the highly similar kinases, Nek6 and Nek7, suggest their distinct signaling functions in mammalian cells.  相似文献   

3.
The NIMA family protein kinases Nek9/Nercc1 and the highly similar Nek6 and Nek7 form a signaling module activated in mitosis, when they are involved in the control of spindle organization and function. Here we report that Nek9, the module upstream kinase, binds to DYNLL/LC8, a highly conserved protein originally described as a component of the dynein complex. LC8 is a dimer that interacts with different proteins and has been suggested to act as a dimerization hub promoting the organization and oligomerization of partially disorganized partners. We find that the interaction of LC8 with Nek9 depends on a (K/R)XTQT motif adjacent to the Nek9 C-terminal coiled coil motif, results in Nek9 multimerization, and increases the rate of Nek9 autoactivation. LC8 binding to Nek9 is regulated by Nek9 activity through the autophosphorylation of Ser(944), a residue immediately N-terminal to the (K/R)XTQT motif. Remarkably, LC8 binding interferes with the interaction of Nek9 with its downstream partner Nek6 as well as with Nek6 activation, thus controlling both processes. Our work sheds light into the control of signal transduction through the module formed by Nek9 and Nek6/7 and uncovers a novel manner in which LC8 can regulate partner physiology by interfering with protein complex formation. We suggest that this and other LC8 functions can be specifically regulated by partner phosphorylation.  相似文献   

4.
The NIMA-related serine/threonine kinases (Neks) function in the cell cycle and regulate ciliary and flagellar length. The Giardia lamblia genome encodes 198 Neks, of which 56 are predicted to be active. Here we believe that we report the first functional analysis of two G. lamblia Neks. The GlNek1 and GlNek2 kinase domains share 57% and 43% identity to the kinase domains of human Nek1 and Nek2, respectively. Both GlNeks are active in vitro, have dynamic relocalisation during the cell cycle, and are expressed throughout the life cycle, with GlNek1 being upregulated in cysts. Over-expression of inactive GlNek1 delays disassembly of the parental attachment disc and cytokinesis, whilst over-expression of either wild type GlNek1 or inactive mutant GlNek2 inhibits excystation.  相似文献   

5.
The Nek family of protein kinases in humans is composed of 11 members that share an amino-terminal catalytic domain related to NIMA, an Aspergillus kinase involved in the control of several aspects of mitosis, and divergent carboxyl-terminal tails of varying length. Nek6 (314AA) and Nek7 (303AA), 76% identical, have little noncatalytic sequence but bind to the carboxyl-terminal noncatalytic tail of Nercc1/Nek9, a NIMA family protein kinase that is activated in mitosis. Microinjection of anti-Nercc1 antibodies leads to spindle abnormalities and prometaphase arrest or chromosome missegregation. Herein we show that Nek6 is increased in abundance and activity during mitosis; activation requires the phosphorylation of Ser206 on the Nek6 activation loop. This phosphorylation and the activity of recombinant Nek6 is stimulated by coexpression with an activated mutant of Nercc1. Moreover, Nercc1 catalyzes the direct phosphorylation of prokaryotic recombinant Nek6 at Ser206 in vitro concomitant with 20-25-fold activation of Nek6 activity; Nercc1 activates Nek7 in vitro in a similar manner. Nercc1/Nek9 is likely to be responsible for the activation of Nek6 during mitosis and probably participates in the regulation of Nek7 as well. These findings support the conclusion that Nercc1/Nek9 and Nek6 represent a novel cascade of mitotic NIMA family protein kinases whose combined function is important for mitotic progression.  相似文献   

6.
7.
Nek6 and Nek7 are members of the NIMA-related serine/threonine kinase family. Previous work showed that they contribute to mitotic progression downstream of another NIMA-related kinase, Nek9, although the roles of these different kinases remain to be defined. Here, we carried out a comprehensive analysis of the regulation and function of Nek6 and Nek7 in human cells. By generating specific antibodies, we show that both Nek6 and Nek7 are activated in mitosis and that interfering with their activity by either depletion or expression of reduced-activity mutants leads to mitotic arrest and apoptosis. Interestingly, while completely inactive mutants and small interfering RNA-mediated depletion delay cells at metaphase with fragile mitotic spindles, hypomorphic mutants or RNA interference treatment combined with a spindle assembly checkpoint inhibitor delays cells at cytokinesis. Importantly, depletion of either Nek6 or Nek7 leads to defective mitotic progression, indicating that although highly similar, they are not redundant. Indeed, while both kinases localize to spindle poles, only Nek6 obviously localizes to spindle microtubules in metaphase and anaphase and to the midbody during cytokinesis. Together, these data lead us to propose that Nek6 and Nek7 play independent roles not only in robust mitotic spindle formation but also potentially in cytokinesis.When cells divide, they must accurately segregate the duplicated genetic material between two daughter cells such that each receives a single complete set of chromosomes. This complex biomechanical feat is achieved through the action of a bipolar microtubule-based scaffold called the mitotic spindle (36). Microtubules are primarily nucleated by centrosomes that sit at the spindle poles (37). However, microtubule nucleation also occurs in the vicinity of the chromosomes and within the spindle itself (12, 13). These activities combine to ensure the efficient capture of sister chromatids as well as the maintenance of a robust structure capable of resisting the considerable forces required for chromosome separation.Spindle assembly is regulated in large part by reversible phosphorylation, and a number of protein kinases are activated during mitosis, localize to specific regions of the spindle, and phosphorylate spindle-associated proteins. These include the master mitotic regulator Cdk1/cyclin B, the polo-like kinase Plk1, and the Aurora family kinases Aurora A and B (25). More recently, members of the NIMA-related kinase family have also been implicated in mitotic spindle regulation (27, 29). NIMA was first identified in Aspergillus nidulans as a kinase required for mitotic entry, possibly through triggering the relocation of Cdk1/cyclin B to the nucleus (6, 38). NIMA can also phosphorylate S10 of histone H3 to promote chromatin condensation (7). The fission yeast NIMA-related kinase Fin1 contributes to multiple steps in mitotic progression, including the timing of mitotic entry, spindle formation, and mitotic exit (14, 15). However, the detailed mechanisms by which these fungal kinases contribute to mitotic regulation remain far from understood.In mammals, there are 11 NIMA-related kinases, named Nek1 to Nek11, and of these, 4 have been directly implicated in mitotic regulation, as follows: Nek2, Nek6, Nek7, and Nek9 (also known as Nercc1) (26, 27, 29). Nek2 is the most closely related mammalian kinase to NIMA and Fin1 by sequence and has been studied in the most detail. It localizes to the centrosome, where it phosphorylates and thereby regulates the association of a number of large coiled-coil proteins implicated in centrosome cohesion and microtubule anchoring (1, 10, 11, 21, 22, 30). These activities facilitate the early stages of spindle assembly at the G2/M transition. Interestingly, Aspergillus NIMA and fission yeast Fin1 also localize to the fungal equivalent of the centrosome, namely the spindle pole body (15, 20, 38). Here, they may participate in positive feedback loops that promote the activation of Cdk1/cyclin B and mitotic entry.Nek6, Nek7, and Nek9 act together in a mitotic kinase cascade, with Nek9 being upstream of Nek6 and Nek7. Nek9 was identified as an interacting partner of Nek6 and subsequently shown to phosphorylate Nek6 at S206 within its activation loop (2, 33). Both Nek9 and Nek6 have been reported to be activated in mitosis (2, 33, 39), although other studies dispute this (18, 23). NIMA-related kinases are characterized by having a conserved N-terminal catalytic domain, followed by a nonconserved C-terminal regulatory domain that varies in size and structure. Nek6 and Nek7 are significant exceptions to this, in that they are the smallest of the kinases and consist only of a catalytic domain with a very short N-terminal extension. They share significant similarity with each other, being 87% identical within their catalytic domains. Hence, although they exhibit distinct tissue expression patterns (8), it has generally been assumed that they are likely to have very similar properties and functions, with both being downstream substrates of Nek9.Functional studies of Nek9 reveal that it has major roles to play in the organization of the mitotic spindle. Expression of inactive and truncated Nek9 mutants led to the missegregation of chromosomes, while injection of anti-Nek9 antibodies into prophase cells caused aberrant mitotic spindle formation (33). Similarly, depletion of Nek9 from Xenopus egg extracts led to a reduction in the formation of bipolar spindles in vitro (32; J. Blot and A. M. Fry, unpublished results). The basis for these defects remains unclear, but a number of binding partners have been identified that suggest possible functions in microtubule nucleation and anchoring, including components of the γ-tubulin ring complex (γ-TuRC), the Ran GTPase, and BicD2 (18, 32, 33).While Nek9 is proposed to act upstream of Nek6 and Nek7, the proportion of its activities being channeled through these kinases is not known. Limited studies have been performed by looking at the consequences of expressing kinase-inactive Nek6 or Nek7 constructs or depleting the proteins by RNA interference (RNAi). Interference with Nek6 has been reported by one group to lead to metaphase arrest and apoptosis (39), although this is disputed by another study (23). Interference with Nek7 apparently leads to an increase in the mitotic index and apoptosis (19, 40). A decrease in centrosome-associated γ-tubulin and microtubule nucleation was also detected upon RNAi of Nek7, which is interesting in light of the interaction between Nek9 and γ-tubulin. Furthermore, defects in cytokinesis were found upon Nek7 depletion if cells were allowed to progress past the spindle checkpoint by codepletion of Mad2 (19). Importantly, both Nek9 and Nek7 localize to centrosomes, further supporting the model that this is a major site of action for this family of kinases in spindle formation (19, 32, 40).In this study, we set out to clarify the mitotic roles of Nek6 and Nek7 by examining the consequences of expression of mutants with different levels of kinase activity as well as depletion of the proteins by RNAi. Our results demonstrate that Nek6 and Nek7 are both activated in mitosis and that interference with either kinase leads to apoptosis following mitotic arrest. Interestingly, expression of inactive mutants or small interfering RNA (siRNA)-mediated depletion leads to a metaphase delay with fragile mitotic spindles, whereas expression of hypomorphic mutants or depletion in the presence of a spindle assembly checkpoint (SAC) inhibitor leads to an accumulation of cells in cytokinesis. Based on additional localization data, we propose that these kinases regulate microtubule organization not only at spindle poles but also within the mitotic spindle itself and possibly at the central spindle during late mitosis. This study therefore provides important novel insights into how Nek6 and Nek7 contribute to distinct molecular events in mitotic progression.  相似文献   

8.
Two splice variants of Nek2 kinase, a member of the NIMA-related family, have been identified as Nek2A and Nek2B. Nek2A regulates centrosome disjunction, spindle formation checkpoint signaling, and faithful chromosome segregation. A specific role for Nek2B has not yet been identified. Here, we have examined the distinct roles of Nek2A and Nek2B using timelapse video microscopy to follow the fate of cells progressing through the cell cycle in the absence of either Nek2A or Nek2B. We show that the down-regulation of Nek2B leads to a mitotic delay in the majority of cells. Upon exiting mitosis, cells exhibit mitotic defects such as the formation of multinucleated cells. Such phenotypes are not observed in cells that exit mitosis in the absence of Nek2A. These observations suggest that Nek2B may be required for the execution of mitotic exit.  相似文献   

9.
Uto K  Sagata N 《The EMBO journal》2000,19(8):1816-1826
Nek2, a NIMA-related kinase, has been postulated to play a role in both the meiotic and mitotic cell cycles in vertebrates. Xenopus has two Nek2 splice variants, Nek2A and Nek2B, which are zygotic and maternal forms, respectively. Here we have examined the role of Nek2B in oocyte meiosis and early embryonic mitosis. Specific inhibition of Nek2B function does not interfere with the oscillation of Cdc2 activity in either the meiotic or mitotic cell cycles; however, it does cause abortive cleavage of early embryos, in which bipolar spindle formation is severely impaired due to fragmentation or dispersal of the centrosomes, to which endogenous Nek2B protein localizes. In contrast, inhibition of Nek2B function does not affect meiotic spindle formation in oocytes, in which functional centrosomes are absent. Thus, strikingly, Nek2B is specifically required for centrosome assembly and/or maintenance (and hence for normal bipolar spindle formation and cleavage) in early Xenopus embryos. Finally, (ectopic) Nek2A but not Nek2B is very labile in cleaving embryos, suggesting that Nek2A cannot replace the centrosomal function of Nek2B in early embryos.  相似文献   

10.
We previously reported that Nek11, a member of the NIMA (never-in-mitosis A) family of kinases, is activated in G(1)/S-arrested cells. We provide herein several lines of evidence for a novel interaction between Nek11 and Nek2A. Both Nek11 and Nek2A, but not Nek2B, were detected at nucleoli, and the Nek2A-specific C-terminal end (amino acids 399-445) was responsible for nucleolar localization. Endogenous Nek11 coimmunoprecipitated with endogenous Nek2A, and non-catalytic regions of each kinase were involved in the complex formation. Nek11L interacted with phosphorylated Nek2A but barely with the kinase-inactive Nek2A (K37R) mutant. In addition, both Nek2A autophosphorylation activity and the Nek11L-Nek2A complex formation increased in G(1)/S-arrested cells. These results indicate that autophosphorylation of Nek2A could stimulate its interaction with Nek11L at the nucleolus. Moreover, Nek2 directly phosphorylated Nek11 in the C-terminal non-catalytic region and elevated Nek11 kinase activity. The non-catalytic region of Nek11 showed autoinhibitory activity through intramolecular interaction with its N-terminal catalytic domain. Nek2 dissociated this autoinhibitory interaction. Altogether, our studies demonstrate a unique mechanism of Nek11 activation by Nek2A in G(1)/S-arrested cells and suggest a novel possibility for nucleolar function of the NIMA family.  相似文献   

11.
Nek2 is a mammalian protein kinase structurally homologous to Aspergillus NIMA. We previously observed that the Nek2 protein was localized in multiple sites within a cell in a cell cycle stage-specific manner. Such dynamic behavior of Nek2 allowed us to propose that Nek2 may be a mitotic regulator that is involved in diverse cell cycle events. To better understand the cellular processes in which Nek2 participates, we carried out yeast two-hybrid screening and isolated Nek2-Interacting Protein 1 (NIP1), which has been also named as XB51 and NECAB3. Physical interactions of Nek2 with NIP1 were confirmed. In fact, Nek2 can phosphorylate NIP1 in vivo. Immunostaining experiments revealed that NIP1 is a Golgi protein. These results propose a possible involvement of Nek2 in biological processes of the Golgi body, perhaps in relation to the inheritance of Golgi during mitosis or to cell cycle stage-specific regulation of exocytosis.  相似文献   

12.
The NIMA-family kinases Nek9/Nercc1, Nek6 and Nek7 form a signalling module required for mitotic spindle assembly. Nek9, the upstream kinase, is activated during prophase at centrosomes although the details of this have remained elusive. We now identify Plk1 as Nek9 direct activator and propose a two-step activation mechanism that involves Nek9 sequential phosphorylation by CDK1 and Plk1. Furthermore, we show that Plk1 controls prophase centrosome separation through the activation of Nek9 and ultimately the phosphorylation of the mitotic kinesin Eg5 at Ser1033, a Nek6/7 site that together with the CDK1 site Thr926 we establish contributes to the accumulation of Eg5 at centrosomes and is necessary for subsequent centrosome separation and timely mitosis. Our results provide a basis to understand signalling downstream of Plk1 and shed light on the role of Eg5, Plk1 and the NIMA-family kinases in the control of centrosome separation and normal mitotic progression.  相似文献   

13.

Background  

Mutations in Nek1 (NIMA-Related Kinase 1) are causal in the murine models of polycystic kidney disease kat and kat 2J . The Neks are known as cell cycle kinases, but recent work in protists has revealed that in addition to roles in the regulation of cell cycle progression, some Neks also regulate cilia. In most cells, cilia are disassembled prior to mitosis and are regenerated after cytokinesis. We propose that Neks participate in the coordination of ciliogenesis with cell cycle progression. Mammalian Nek1 is a candidate for this activity because renal cysts form in response to dysfunctional ciliary signalling.  相似文献   

14.

Background

Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD.

Result

We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman’s space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths.

Conclusion

Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.  相似文献   

15.
目的:筛选与Robo1分子相互作用的蛋白质,为揭示Robo1调节胃癌细胞迁移能力的机制提供线索。方法:通过Transwell迁移实验检测下调Robo1对胃癌细胞SGC7901迁移能力的影响,并对胃癌细胞SGC7901利用Robo1抗体和lgG分别进行免疫沉淀,再经质谱检测及生物信息学分析筛选与Robo1分子特异性结合的蛋白质,通过免疫共沉淀(Co-immunoprecipitation,Co-IP)验证蛋白质相互作用。结果:(1)转染Robo1小干扰RNA(si RNA)的SGC7901细胞较转染阴性对照RNA的迁移能力显著降低。(2)通过免疫沉淀、质谱检测和生物信息学分析的两次生物学重复得到一系列与Robo1相互作用的蛋白,筛选出丰度高、重复性好且功能相关的Nek9蛋白。(3)Co-IP实验结果显示与对照抗体相比,Robo1抗体可特异性地将Nek9沉淀下来,同时Nek9抗体也可特异性地将Robo1共沉淀下来,确证了Robo1-Nek9的相互作用。结论:Nek9是与Robo1相互作用的蛋白质,Robo1下调影响人胃癌细胞系SGC7901的迁移能力,可能通过Nek9起作用。Robo1-Nek9的相互作用为进一步研究Robo1在胃癌细胞中的功能及机制提供了有利的线索。  相似文献   

16.
17.
目的通过原核表达系统表达人Nek2蛋白,优化表达条件并纯化Nek2蛋白,制备抗Nek2多克隆抗体.方法Nek2基因片段构建到原核表达载体pET30a(+)上,转化大肠杆菌BL21 (DE3);加入诱导剂IPTG诱导表达,对诱导温度,诱导剂IPTG终浓度,诱导时间等条件进行优化;利用12% SDS-PAGE后250mmol/L KCl染色切胶纯化蛋白质,将纯化后的Nek2蛋白进行质谱鉴定;纯化Nek2蛋白免疫BALB/c小鼠制备多克隆抗体,运用ELISA,Western blot和免疫荧光实验检测多克隆抗体效价和特异性.结果 构建了pET30a(+)-Nek2重组原核表达质粒,诱导的重组人Nek2蛋白主要以包涵体的形式存在;蛋白质的最适诱导表达条件为28℃,180r/min条件下加入终浓度为0.2mmol/L IPTG诱导32h;质谱分析纯化后的蛋白质为Nek2蛋白,最终获得浓度为1.35mg/ml纯化后的Nek2蛋白;纯化蛋白免疫小鼠,多克隆抗体效价大于1∶243 000,且具有良好的抗原特异性;免疫荧光实验显示Nek2主要定位于细胞质和细胞核.结论: 利用重组人Nek2蛋白获得具有良好抗原特异性的抗Nek2多克隆抗体.  相似文献   

18.
The dimeric Ser/Thr kinase Nek2 regulates centrosome cohesion and separation through phosphorylation of structural components of the centrosome, and aberrant regulation of Nek2 activity can lead to aneuploid defects characteristic of cancer cells. Mutational analysis of autophosphorylation sites within the kinase domain identified by mass spectrometry shows a complex pattern of positive and negative regulatory effects on kinase activity that are correlated with effects on centrosomal splitting efficiency in vivo. The 2.2-A resolution x-ray structure of the Nek2 kinase domain in complex with a pyrrole-indolinone inhibitor reveals an inhibitory helical motif within the activation loop. This helix presents a steric barrier to formation of the active enzyme and generates a surface that may be exploitable in the design of specific inhibitors that selectively target the inactive state. Comparison of this "auto-inhibitory" conformation with similar arrangements in cyclin-dependent kinase 2 and epidermal growth factor receptor kinase suggests a role for dimerization-dependent allosteric regulation that combines with autophosphorylation and protein phosphatase 1c phosphatase activity to generate the precise spatial and temporal control required for Nek2 function in centrosomal maturation.  相似文献   

19.
A monoclonal antibody raised against adenovirus E1A-associated cellular proteins recognized Nek9, a NimA-related protein kinase. Subcellular fractionation and immunofluorescence indicated that Nek9 was primarily cytoplasmic with a small portion located in the nucleus whereas E1A was primarily nuclear. Although co-immunoprecipitation experiments indicated that nuclear Nek9 interacted, directly or indirectly, with E1A, the major effect of E1A was to diminish the amount of Nek9 in the nucleus suggesting that E1A alters the subcellular distribution of Nek9 and that the interaction is transient. A Nek9 deletion mutant lacking a central RCC1-like domain interacted stably with E1A and accumulated in the nucleus in the presence of E1A, possibly representing an intermediate stage of the normally transient Nek9/E1A interaction. The interaction of Nek9 with E1A was dependent on the N-terminal sequences of E1A. Attempts to stably overexpress either Nek9 or the kinase-inactive mutant in various cell lines were unsuccessful; however, the presence of E1A allowed stable overexpression of both proteins. These results suggest that E1A disrupts a nuclear function of Nek9.  相似文献   

20.
We describe the isolation, cloning, and characterization of human Nek8, a new mammalian NIMA-related kinase, and its candidate substrate Bicd2. Nek8 was isolated as a beta-casein kinase activity in rabbit lung and has an N-terminal catalytic domain homologous to the Nek family of protein kinases. Nek8 also contains a central domain with homology to RCC1, a guanine nucleotide exchange factor for the GTPase Ran, and a C-terminal coiled-coil domain. Like Nek2, Nek8 prefers beta-casein over other exogenous substrates, has shared biochemical requirements for kinase activity, and is capable of autophosphorylation and oligomerization. Nek8 activity is not cell cycle regulated, but like Nek3, levels are consistently higher in G(0)-arrested cells. During the purification of Nek8 a second protein co-chromatographed with Nek8 activity. This protein, Bicd2, is a human homolog of the Drosophila protein Bicaudal D, a coiled-coil protein. Bicd2 is phosphorylated by Nek8 in vitro, and the endogenous proteins associate in vivo. Bicd2 localizes to cytoskeletal structures, and its subcellular localization is dependent on microtubule morphology. Treatment of cells with nocodazole leads to dramatic reorganization of Bicd2, and correlates with Nek8 phosphorylation. This may be indicative of a role for Nek8 and Bicd2 associated with cell cycle independent microtubule dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号