首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To elucidate the genetic alterations that are specific to Thorotrast-induced liver cancers and their possible roles in tumorigenesis, we analyzed loss of heterozygosity (LOH) at 37 loci. Our previous study of liver cancers that were not associated with Thorotrast found LOH at 9 of these loci to be characteristic of intrahepatic cholangiocarcinoma (ICC), at 19 to be characteristic of hepatocellular carcinoma (HCC), and at 9 to be common to both ICC and HCC. LOH analysis was also performed in tissues of cholangiolocellular carcinoma, which is thought to originate from a common stem cell progenitor of hepatocytes and bile duct epithelial cells. We found frequent LOH at D4S1538, D16S2624 and D17S1303 to be common to all the subtypes of liver cancers, independent of the specific carcinogenic agent. In contrast, LOH at D4S1652 generally was not observed in Thorotrast-induced ICC. LOH analysis revealed that Thorotrast-induced ICC shares some LOH features with both ICC and HCC that were not induced by Thorotrast; however, it is more similar to ICC than to HCC in terms of genetic changes. This study could narrow down the crucial chromosomal loci whose deletions are relevant to hepatobiliary carcinogenesis irrespective of the carcinogenic agent. The study of LOH at loci other the those crucial ones may help us understand how the phenotype of liver cancers is determined.  相似文献   

3.
Loss of heterozygosity (LOH) of chromosomal regions is crucial in tumor progression. In this study we assessed the potential of the Affymetrix GeneChip HuSNP mapping assay for detecting genome-wide LOH in prostate tumors. We analyzed two human prostate cell lines, P69SV40Tag (P69) and its tumorigenic subline, M12, and 11 prostate cancer cases. The M12 cells showed LOH in chromosomes 3p12.1-p22.1, 11q22.1-q24.2, 19p13.12, and 19q13.42. All of the prostate cases with informative single-nucleotide polymorphism (SNP) markers showed LOH in 1p31.2, 10q11.21, 12p13.1, 16q23.1-q23.2, 17p13.3, 17q21.31, and 21q21.2. Additionally, a high percentage of cases showed LOH at 6p25.1-p25.3 (75%), 8p22-p23.2, and 10q22.1 (70%). Several tumor suppressor genes (TSGs) have been mapped in these loci. These results demonstrate that the HuSNP mapping assay can serve as an alternative to comparative genomic hybridization for assessing genome-wide LOH and can identify chromosomal regions harboring candidate TSGs implicated in prostate cancer.  相似文献   

4.
Genomic instability within somatic stem cells may lead to the accumulation of mutations and contribute to cancer or other age-related phenotypes. However, determining the frequency of mutations that differ among individual stem cells is difficult from whole tissue samples because each event is diluted in the total population of both stem cells and differentiated tissue. Here the ability to expand neural stem/progenitor cells clonally permitted measurement of genomic alterations derived from a single initial cell. C57Bl/6 x DBA/2 hybrid mice were used and PCR analysis with strain-specific primers was performed to detect loss of heterozygosity on nine different chromosomes for each neurosphere. The frequency with which changes occurred in neurospheres derived from 2-month- and 2-year-old mice was compared. In 15 neurospheres derived from young animals both parental chromosomes were present for all nine chromosome pairs. In contrast, 16/17 neurospheres from old animals demonstrated loss of heterozygosity (LOH) on one or more chromosomes and seven exhibited a complete deletion of at least one chromosomal region. For chromosomes 9 and 19 there is a significant bias in the allele that is lost where in each case the C57Bl/6 allele is retained in 6/6 neurospheres exhibiting LOH. These data suggest that aging leads to a substantial mutational load within the neural stem cell compartment which can be expected to affect the normal function of these cells. Furthermore, the retention of specific alleles for chromosomes 9 and 19 suggests that a subset of mutational events lead to an allele-specific survival advantage within the neural stem cell compartment.  相似文献   

5.
X chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell via a random process. Skewed XCI is relevant to many diseases, but the mechanism leading to it remains unclear. Human embryonic stem cells (hESCs) derived from the inner cell mass (ICM) of blastocyst-stage embryos have provided an excellent model system for understanding XCI initiation and maintenance. Here, we derived hESC lines with random or skewed XCI patterns from poor-quality embryos and investigated the genome-wide copy number variation (CNV) and loss of heterozygosity (LOH) patterns at the early passages of these two groups of hESC lines. It was found that the average size of CNVs on the X chromosomes in the skewed group is twice as much as that in the random group. Moreover, the LOH regions of the skewed group covered the gene locus of either XIST or XACT, which are master long non-coding RNA (lncRNA) effectors of XCI in human pluripotent stem cells. In conclusion, our work has established an experimentally tractable hESC model for study of skewed XCI and revealed an association between X chromosome instability and skewed XCI.  相似文献   

6.
Objectives: To test whether genetic instability may determine whether tumours become aneuploid or diploid. Materials and methods: We have identified genes needed for cell survival or replication by combining Affymetrix gene expression array data from 12 experimental cell lines with in silico GEO+GNF and expO databases. Specific loss of heterozygosis (LOHs), chromosomal abnormalities (called derivative chromosomes) and numbers of normal homologues were identified by SNP and SKY analyses. Random gene losses were calculated under the assumption that bi‐allelic MMR gene inactivation causes a 20‐fold increase in rate of gene loss. Results: There were ~1.23 × 104 genes widely dispersed throughout the genome and possibly expressed by all cells for survival or proliferation, many of these genes performed housekeeping functions. Conservation of the genes may explain the complete haploid genomes found for 15 different cell types and derivative chromosomes selectively retained in aneuploid cancer cell lines after LOH formations, and normal homologue losses. Loss of cell survival/replication genes was calculated to be higher in colon stem cells of carriers of MMR gene mutations than carriers of APC gene mutations. Conclusion: Random loss of cell survival/replication genes was calculated to be low enough for colon stem cells with APC gene mutations to ‘select’ LOH and derivative chromosome combinations favouring tumour cell proliferation. However, cell survival/replication gene loss was calculated to be too high for colonic stem cells lacking MMR genes to survive chromosomal instability, explaining why MMR mutations only produce tumours with diploid chromosome cells.  相似文献   

7.
Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.  相似文献   

8.
In response to ionizing radiation and other agents that damage DNA, the p53 tumor suppressor protein activates multiple cellular processes including cell cycle checkpoints and programmed cell death. Although loss of p53 function is associated with radiation-induced genetic instability in cell lines, it is not clear if this relationship exists in vivo. To study the role of p53 in maintenance of genetic stability in normal tissues following irradiation, we have measured mutant frequencies at the adenine phosphoribosyltransferase (Aprt) and hypothanine-guanine phosphoribosyltransferase (Hprt) loci and examined mechanisms of loss of heterozygosity (LOH) in normal T cells of p53-deficient, Aprt heterozygous mice that were subjected to whole-body irradiation with a single dose of 4Gy X-rays. The radiation-induced mutant frequency at both the Aprt and Hprt loci was elevated in cells from mice with different p53 genotypes. The radiation-induced elevation of p53-/- mice was significantly greater than that of p53+/- or p53+/+ mice and was caused by several different kinds of mutational events at the both chromosomal and intragenic levels. Most significantly, interstitial deletion, which occurs rarely in unirradiated mice, became the most common mechanism leading to LOH in irradiated p53 null mice. These observations support the idea that absence or reduction of p53 expression enhances radiation-induced tumorigenesis by increasing genetic instability at various loci, such as those for tumor suppressor genes.  相似文献   

9.
The relationship between the apparently random chromosomal changes found in aneuploidy and the genetic instability driving the progression of cancer is not clear. We report a test of the hypothesis that aneuploid chromosomal abnormalities might be selected to preserve cell-survival genes during loss of heterozygosity (LOH) formations which eliminate tumor suppressor genes. The LOHs and structurally abnormal chromosomes present in the aneuploid LoVo (colon), A549 (lung), SUIT-2 (pancreas), and LN-18 (glioma) cancer cell lines were identified by single nucleotide polymorphisms (SNPs) and Spectral Karyotyping (SKY). The Mann-Whitney U and chi square tests were used to evaluate possible differences in chromosome numbers and abnormalities between the cell lines, with two-tailed P values of <0.01 being considered significant. The cell lines differed significantly in chromosome numbers and frequency of structurally abnormal chromosomes. The SNP analysis revealed that each cell line contained at least a haploid set of somatic chromosomes, consistent with our hypothesis that cell-survival genes are widely scattered throughout the genome. Further, over 90% of the chromosomal abnormalities seemed to be selected, often after LOH formation, for gene-dosage compensation or to provide heterozygosity for specific chromosomal regions. These results suggest that the chromosomal changes of aneuploidy are not random, but may be selected to provide gene-dosage compensation and/or retain functional alleles of cell-survival genes during LOH formation.  相似文献   

10.
To understand genetic and epigenetic pathways in Wilms' tumors, we carried out a genome scan for loss of heterozygosity (LOH) using Affymetrix 10K single nucleotide polymorphism (SNP) chips and supplemented the data with karyotype information. To score loss of imprinting (LOI) of the IGF2 gene, we assessed DNA methylation of the H19 5' differentially methylated region (DMR). Few chromosomal regions other than band 11p13 (WT1) were lost in Wilms' tumors from Denys-Drash and Wilms' tumor-aniridia syndromes, whereas sporadic Wilms' tumors showed LOH of several regions, most frequently 11p15 but also 1p, 4q, 7p, 11q, 14q, 16q, and 17p. LOI was common in the sporadic Wilms' tumors but absent in the syndromic cases. The SNP chips identified novel centers of LOH in the sporadic tumors, including a 2.4-Mb minimal region on chromosome 4q24-q25. Losses of chromosomes 1p, 14q, 16q, and 17p were more common in tumors presenting at an advanced stage; 11p15 LOH was seen at all stages, whereas LOI was associated with early-stage presentation. Wilms' tumors with LOI often completely lacked LOH in the genome-wide analysis, and in some tumors with concomitant 16q LOH and LOI, the loss of chromosome 16q was mosaic, whereas the H19 DMR methylation was complete. These findings confirm molecular differences between sporadic and syndromic Wilms' tumors, define regions of recurrent LOH, and indicate that gain of methylation at the H19 DMR is an early event in Wilms' tumorigenesis that is independent of chromosomal losses. The data further suggest a biological difference between sporadic Wilms' tumors with and without LOI.  相似文献   

11.
Cancers arise as a result of stepwise accumulation of mutations which may occur at the nucleotide level and/or the gross chromosomal level. Many cancers particularly those of the colon display a form of genomic instability which may facilitate and speed up tumor initiation and development. In few instances, a “mutator mutation” has been clearly implicated in driving the accumulation of other carcinogenic mutations. For example, the post-replicative DNA mismatch repair deficiency results in dramatic increase in insertion/deletion mutations giving rise to the microsatellite instability (MSI) phenotype and may predispose to a spectrum of tumours when it occurs in the germline. Although many sporadic cancers show multiple mutations suggesting unstable genome, the role of this instability in carcinogenesis, as opposed to the power of natural selection, has been a matter of controversy. This review gives an update of the latest data on these issues particularly recent data from genome-wide, high throughput techniques as well as mathematical modelling. Throughout this review, reference will be made to the relevance of genomic instability to the pathogenesis of colorectal carcinoma particularly its hereditary and familial subsets.  相似文献   

12.
Cancers are thought to originate in stem cells through the accumulation of multiple mutations. Some of these mutations result in a loss of heterozygosity (LOH). A recent report demonstrates that exposure of mouse embryonic stem cells to nontoxic amounts of mutagens triggers a marked increase in the frequency of LOH. Thus, mutagen induction of LOH in embryonic stem cells suggests a new pathway to account for the multiple homozygous mutations in human tumors. This induction could mimic early mutagenic events that generate cancers in human tissue stem cells.  相似文献   

13.
H L Klein 《Genetics》2001,159(4):1501-1509
Genomic instability is one of the hallmarks of cancer cells and is often the causative factor in revealing recessive gene mutations that progress cells along the pathway to unregulated growth. Genomic instability can take many forms, including aneuploidy and changes in chromosome structure. Chromosome loss, loss and reduplication, and deletions are the majority events that result in loss of heterozygosity (LOH). Defective DNA replication, repair, and recombination can significantly increase the frequency of spontaneous genomic instability. Recently, DNA damage checkpoint functions that operate during the S-phase checkpoint have been shown to suppress spontaneous chromosome rearrangements in haploid yeast strains. To further study the role of DNA damage checkpoint functions in genomic stability, we have determined chromosome loss in DNA damage checkpoint-deficient yeast strains. We have found that the DNA damage checkpoints are essential for preserving the normal chromosome number and act synergistically with homologous recombination functions to ensure that chromosomes are segregated correctly to daughter cells. Failure of either of these processes increases LOH events. However, loss of the G2/M checkpoint does not result in an increase in chromosome loss, suggesting that it is the various S-phase DNA damage checkpoints that suppress chromosome loss. The mec1 checkpoint function mutant, defective in the yeast ATR homolog, results in increased recombination through a process that is distinct from that operative in wild-type cells.  相似文献   

14.
Two forms of genetic instability have been described in colorectal cancer: microsatellite instability and chromosomal instability. Microsatellite instability results from mutations in mismatch repair genes; chromosomal instability is the hallmark of many colorectal cancers, although it is not completely understood at the molecular level. As truncations of the Adenomatous Polyposis Coli (APC) gene are found in most colorectal tumours, we thought that mutations in APC might be responsible for chromosomal instability. To test this hypothesis, we examined mouse embryonic stem (ES) cells homozygous for Min (multiple intestinal neoplasia) or Apc1638T alleles. Here we show that Apc mutant ES cells display extensive chromosome and spindle aberrations, providing genetic evidence for a role of APC in chromosome segregation. Consistent with this, APC accumulates at the kinetochore during mitosis. Apc mutant cells form mitotic spindles with an abundance of microtubules that inefficiently connect with kinetochores. This phenotype is recapitulated by the induced expression of a 253-amino-acid carboxy-terminal fragment of APC in microsatellite unstable colorectal cancer cells. We conclude that loss of APC sequences that lie C-terminal to the beta-catenin regulatory domain contributes to chromosomal instability in colorectal cancer.  相似文献   

15.
Ajima J  Umezu K  Maki H 《Mutation research》2002,504(1-2):157-172
The SGS1 gene of Saccharomyces cerevisiae is a member of the RecQ helicase family, which includes the human BLM, WRN and RECQL4 genes responsible for Bloom and Werner's syndrome and Rothmund-Thomson syndrome, respectively. Cells defective in any of these genes exhibit a higher incidence of genome instability. We previously demonstrated that various genetic alterations were detectable as events leading to loss of heterozygosity (LOH) in S. cerevisiae diploid cells, utilizing a hemizygous URA3 marker placed at the center of the right arm of chromosome III. Analyses of chromosome structure in LOH clones by pulse field gel electrophoresis (PFGE) and PCR, coupled with a genetic method, allow identification of genetic alterations leading to the LOH. Such alterations include chromosome loss, chromosomal rearrangements at various locations and intragenic mutation. In this work, we have investigated the LOH events occurring in cells lacking the SGS1 gene. The frequencies of all types of LOH events, excluding intragenic mutation, were increased in sgs1 null mutants as compared to the wild-type cells. Loss of chromosome III and chromosomal rearrangements were increased 13- and 17-fold, respectively. Further classification of the chromosomal rearrangements confirmed that two kinds of events were especially increased in the sgs1 mutants: (1) ectopic recombination between chromosomes, that is, unequal crossing over and translocation (46-fold); and (2) allelic crossing over associated with chromosome loss (40-fold). These findings raise the possibility that the Sgs1 protein is involved in the processing of recombination intermediates as well as in the prevention of recombination repair during chromosome DNA replication. On the other hand, intrachromosomal deletions between MAT and HMR were increased only slightly (2.9-fold) in the sgs1 mutants. These results clearly indicate that defects in the SGS1 gene function lead to an elevated incidence of LOH in multiple ways, including chromosome loss and interchromosomal rearrangements, but not intrachromosomal deletion.  相似文献   

16.
Single nucleotide polymorphisms (SNPs) have been increasingly utilized to investigate somatic genetic abnormalities in premalignancy and cancer. LOH is a common alteration observed during cancer development, and SNP assays have been used to identify LOH at specific chromosomal regions. The design of such studies requires consideration of the resolution for detecting LOH throughout the genome and identification of the number and location of SNPs required to detect genetic alterations in specific genomic regions. Our study evaluated SNP distribution patterns and used probability models, Monte Carlo simulation, and real human subject genotype data to investigate the relationships between the number of SNPs, SNP HET rates, and the sensitivity (resolution) for detecting LOH. We report that variances of SNP heterozygosity rate in dbSNP are high for a large proportion of SNPs. Two statistical methods proposed for directly inferring SNP heterozygosity rates require much smaller sample sizes (intermediate sizes) and are feasible for practical use in SNP selection or verification. Using HapMap data, we showed that a region of LOH greater than 200 kb can be reliably detected, with losses smaller than 50 kb having a substantially lower detection probability when using all SNPs currently in the HapMap database. Higher densities of SNPs may exist in certain local chromosomal regions that provide some opportunities for reliably detecting LOH of segment sizes smaller than 50 kb. These results suggest that the interpretation of the results from genome-wide scans for LOH using commercial arrays need to consider the relationships among inter-SNP distance, detection probability, and sample size for a specific study. New experimental designs for LOH studies would also benefit from considering the power of detection and sample sizes required to accomplish the proposed aims.  相似文献   

17.
In diploid eukaryotes, repair of double-stranded DNA breaks by homologous recombination often leads to loss of heterozygosity (LOH). Most previous studies of mitotic recombination in Saccharomyces cerevisiae have focused on a single chromosome or a single region of one chromosome at which LOH events can be selected. In this study, we used two techniques (single-nucleotide polymorphism microarrays and high-throughput DNA sequencing) to examine genome-wide LOH in a diploid yeast strain at a resolution averaging 1 kb. We examined both selected LOH events on chromosome V and unselected events throughout the genome in untreated cells and in cells treated with either γ-radiation or ultraviolet (UV) radiation. Our analysis shows the following: (1) spontaneous and damage-induced mitotic gene conversion tracts are more than three times larger than meiotic conversion tracts, and conversion tracts associated with crossovers are usually longer and more complex than those unassociated with crossovers; (2) most of the crossovers and conversions reflect the repair of two sister chromatids broken at the same position; and (3) both UV and γ-radiation efficiently induce LOH at doses of radiation that cause no significant loss of viability. Using high-throughput DNA sequencing, we also detected new mutations induced by γ-rays and UV. To our knowledge, our study represents the first high-resolution genome-wide analysis of DNA damage-induced LOH events performed in any eukaryote.  相似文献   

18.
Wang Y  Heddle JA 《Mutation research》2004,554(1-2):131-137
Bloom Syndrome (BS) is characterized by both cancer and genomic instability, including chromosomal aberrations, sister chromosome exchanges, and mutations. Since BS heterozygotes are much more frequent than homozygotes, the issue of the sensitivity of heterozygotes to cancer is an important one. This and many other questions concerning the effects of BLM (the gene responsible for the BS) are more easily studied in mice than in humans. To gain insight into genomic instability associated with loss of function of BLM, which codes for a DNA helicase, we compared frequencies of micronuclei, somatic mutations, and loss of heterozygosity (LOH) in Blmtm3Brd homozygous, heterozygous, and wild-type mice carrying a cII transgenic reporter gene. It should be noted that the Blmtm3Brd is inserted into the endogenous locus with a partial duplication of the gene, so some function of the locus may be retained. The cII reporter gene was introduced from the Big Blue mouse by crossing them with Blmtm3Brd mice. All measurements were made on F2 mice from this cross. The reticulocytes of Blmtm3Brd homozygous mice had more micronuclei than heterozygous or wild-type mice (4.5, 2.7, and 2.5 per thousand, respectively; P < 0.01) but heterozygotes did not differ significantly from wild-type. Unlike spontaneous chromosome damage, spontaneous mutant frequencies did not differ significantly among homozygous, heterozygous, and wild-type mice (3.2 x 10(-5), 3.1 x 10(-5), and 3.1 x 10(-5), respectively; P > 0.05). Mutation measurements were also made on mice that had been treated with ethyl-nitrosourea (ENU) because Bloom Syndrome cells are sensitive to ethylating agents. The ENU-induced mutation frequency in Blmtm3Brd homozygous, heterozygous, and wild mice were 54 x 10(-5), 35 x 10(-5), and 25 x 10(-5) mutants/plaques, respectively. ENU induced more mutations in Blmtm3Brd homozygous mice than in wild-type mice (P < 0.01), but not significantly more in heterozygous mice (P = 0.06). Spontaneous LOH did not differ significantly among the genotypes, but ENU treatment induced much more LOH in Blmtm3Brd homozygous mice, as measured by means of the Dlb-1 test of Vomiero-Highton and Heddle. Hence, these Blmtm3Brd mice resemble Bloom Syndrome except that they have normal frequencies of spontaneous mutation. The fact that these mice have elevated rates of both cancer and chromosomal aberrations (as shown by more micronuclei and LOH) but normal rates of spontaneous mutation, shows the greater importance of chromosomal events than mutations in the origin of their cancers.  相似文献   

19.
Many publications have documented loss of heterozygosity (LOH) on many different chromosomes in a wide variety of tumours, implicating the existence of multiple tumour suppressor genes (TSGs). Knudson's two-hit hypothesis predicts that these LOH events are the second step in the inactivation of both alleles of a TSG. However, to date the number of TSGs identified that are inactivated mainly at the somatic level in cancers and are not inherited has remained disappointingly small. Here we postulate that the accurate mapping of LOH events in a series of tumours to define a common LOH region is greatly confounded by deficient LOH detection, genetic instability and intertumour heterogeneity. Finding the TSGs in chromosomal regions of frequent LOH might require 'brute-force' genomic approaches.  相似文献   

20.
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号