首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Somatic mutations at Thr-58 of c-Myc have been detected in Burkitt's lymphoma (BL) tumors and have been shown to affect the transforming potential of the Myc oncoprotein. In addition, the N-terminal domain of c-Myc has been shown to interact with microtubules in vivo, and the binding of c-Myc to alpha-tubulin was localized to amino acids 48 to 135 within the c-Myc protein. We demonstrate that c-Myc proteins harboring a naturally occurring mutation at Thr-58 from BL cell lines have increased stability and are constitutively hyperphosphorylated, which disrupts the in vivo interaction of c-Myc with alpha-tubulin. In addition, we show that wild-type c-Myc-alpha-tubulin interactions are also disrupted during a transient mitosis-specific hyperphosphorylation of c-Myc, which resembles the constitutive hyperphosphorylation pattern of Thr-58 in BL cells.  相似文献   

4.
5.
6.
To examine the mechanisms by which transforming growth factors (TGFs) regulate the proliferation of eukaryotic cells, five cell lines, from different species and tissues, were treated with three agents that inhibit DNA synthesis and proliferation: BSC-1 cell-derived growth inhibitor (GI/TGF-beta), platelet-derived transforming growth factor-beta (TGF-beta), and 12-O-tetradecanoylphorbol-13-acetate. The cell lines tested were mink lung CCL 64 epithelial cells, Maloney sarcoma virus-transformed CCL 64.1, monkey kidney BSC-1 epithelial cells, human epidermoid A431 cells, and mouse embryo AKR-2B (clone 84A) cells. All cell lines responded to one or more of these agents by synthesizing and secreting a 48 to 51-kDa protein (IIP48). The TGF-beta s and 12-O-tetradecanoylphorbol-13-acetate had little or no effect on the incorporation of [35S] methionine into other secreted proteins or on the pattern of [35S]methionine-labeled intracellular proteins analyzed by one-dimensional, sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The maximum increase in induction of IIP48 varied from 2-fold to greater than 800-fold compared with the controls and occurred within 6 h of adding GI/TGF-beta to CCL 64 cells. Actinomycin D, alpha-amanitin, or 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole selectively decreased both the control and induced levels of IIP48 even after as little as 6 h of incubation. Thus, it appears that IIP48 mRNA turns over rapidly. Induction of IIP48 was dissociated from the inhibition of DNA synthesis by GI/TGF-beta. However, we found that epidermal growth factor and GI/TGF-beta act synergistically to increase the secreted level of IIP48. Others have shown that epidermal growth factor and TGF-beta act synergistically to stimulate growth of cells in agar. IIP48 from CCL 64, BSC-1, and AKR-2B cells is specifically immunoprecipitated by antibody to bovine plasminogen activator inhibitor. We found previously that TGF-beta also inhibits the production of major excreted protein, a thiol protease. It is proposed that TGF-beta is able to promote anchorage-independent growth of untransformed cells because of its ability to inhibit the production of secreted proteases and to increase the production of protease inhibitors.  相似文献   

7.
Targeting of Miz-1 is essential for Myc-mediated apoptosis   总被引:3,自引:0,他引:3  
  相似文献   

8.
The N-terminal domain of the c-Myc protein has been reported to be critical for both the transactivation and biological functions of the c-Myc proteins. Through detailed phosphopeptide mapping analyses, we demonstrate that there is a cluster of four regulated and complex phosphorylation events on the N-terminal domain of Myc proteins, including Thr-58, Ser-62, and Ser-71. An apparent enhancement of Ser-62 phosphorylation occurs on v-Myc proteins having a mutation at Thr-58 which has previously been correlated with increased transforming ability. In contrast, phosphorylation of Thr-58 in cells is dependent on a prior phosphorylation of Ser-62. Hierarchical phosphorylation of c-Myc is also observed in vitro with a specific glycogen synthase kinase 3 alpha, unlike the promiscuous phosphorylation observed with other glycogen synthase kinase 3 alpha and 3 beta preparations. Although both p42 mitogen-activated protein kinase and cdc2 kinase specifically phosphorylate Ser-62 in vitro and cellular phosphorylation of Thr-58/Ser-62 is stimulated by mitogens, other in vivo experiments do not support a role for these kinases in the phosphorylation of Myc proteins. Unexpectedly, both the Thr-58 and Ser-62 phosphorylation events, but not other N-terminal phosphorylation events, can occur in the cytoplasm, suggesting that translocation of the c-Myc proteins to the nucleus is not required for phosphorylation at these sites. In addition, there appears to be an unusual block to the phosphorylation of Ser-62 during mitosis. Finally, although the enhanced transforming properties of Myc proteins correlates with the loss of phosphorylation at Thr-58 and an enhancement of Ser-62 phosphorylation, these phosphorylation events do not alter the ability of c-Myc to transactivate through the CACGTG Myc/Max binding site.  相似文献   

9.
Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER−) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes.  相似文献   

10.
11.
《Cellular signalling》2014,26(9):1878-1887
BackgroundDeregulation of protein synthesis is integral to the malignant phenotype and translation initiation is the rate limiting stage. Therefore, eIF4F translation initiation complex components are attractive therapeutic targets.MethodsProtein lysates of myeloma cells (cell lines/patients' bone marrow samples) untreated/treated with bevacizumab were assayed for eIF4GI expression, regulation (NQO1/proteosome dependent fragmentation) (WB, Dicumarol, qPCR) and targets (WB). eIF4GI was inhibited by knockdown and 4EGI-1. Cells were tested for viability (ELISA), death (FACS) and eIF4GI targets (WB).ResultsPreviously, we have shown that manipulation of VEGF in myeloma cells attenuated eIF4E dependent translation initiation. Here we assessed the significance of eIF4GI to MM cells. We demonstrated increased expression of eIF4GI in myeloma cells and its attenuation upon VEGF inhibition attributed to elevated NQO1/proteasome dependent fragmentation and diminished mRNA levels. Knockdown of eIF4GI was deleterious to myeloma cells phenotype and expression of specific molecular targets (SMAD5/ERα/HIF1α/c-Myc). Finally, we showed that the small molecule 4EGI-1 inhibits eIF4GI and causes a reduction in expression of its molecular targets in myeloma.ConclusionOur findings substantiate that translation initiation of particular targets in MM is contingent on the function of eIF4GI, critical to cell phenotype, and mark it as a viable target for pharmacological intervention.  相似文献   

12.
13.
14.
15.
16.
Overexpression of the oncogene c-Myc sensitizes many apoptotic signals through the activation of mitochondrial apoptosis pathway. However, the underling mechanism has not been clearly defined. Here, we investigated the effect of c-Myc expression on histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA)-induced apoptosis in rat fibroblast cells possessing various c-Myc levels. In Rat 1a cells overexpressing c-Myc, SAHA-induced enhanced the cell death response relative to the parental cells; whereas Rat 1a cells lacking c-Myc were refractory to SAHA treatment. We demonstrated that SAHA selectively induced the expression of pro-apoptotic BH3-only protein Bim, leading to Bax activation in c-Myc-expressing cells. Where c-Myc was absent, Bim, despite its induction by SAHA, failed to activate Bax and was unable to induce apoptosis. These results indicate that c-Myc is dispensable for Bim induction by SAHA, but is required for subsequent Bax activation. We further show that the expression levels of anti-apoptotic Bcl-2/Bcl2-xL were much elevated in Myc-null cells compared with the c-Myc-expressing cells; furthermore, depletion of Bcl-2/Bcl-xL in these cells restored the ability of SAHA to induce apoptosis by enhancing Bax activation. These data indicate that SAHA induces apoptosis through Bim-triggered Bax activation and that c-Myc regulates this process by modulating Bcl-2/Bcl-xL. Our results provide novel insight into the mechanism whereby Myc sensitizes the apoptotic signals; furthermore, our data suggest that cancer cells with deregulated Myc might be more sensitive to SAHA treatment.  相似文献   

17.
c-myc oncoprotein function.   总被引:8,自引:0,他引:8  
  相似文献   

18.
The oncogenic property of the adenovirus (Ad) transforming E1A protein is linked to its capacity to induce cellular DNA synthesis which occurs as a result of its interaction with several host proteins, including pRb and p300/CBP. While the proteins that contribute to the forced induction of cellular DNA synthesis have been intensively studied, the nature of the cellular DNA replication that is induced by E1A in quiescent cells is not well understood. Here we show that E1A expression in quiescent cells leads to massive cellular DNA rereplication in late S phase. Using a single-molecule DNA fiber assay, we studied the cellular DNA replication dynamics in E1A-expressing cells. Our studies show that the DNA replication pattern is dramatically altered in E1A-expressing cells, with increased replicon length, fork velocity, and interorigin distance. The interorigin distance increased by about 3-fold, suggesting that fewer DNA replication origins are used in E1A-expressing cells. These aberrant replication events led to replication stress, as evidenced by the activation of the DNA damage response. In earlier studies, we showed that E1A induces c-Myc as a result of E1A binding to p300. Using an antisense c-Myc to block c-Myc expression, our results indicate that induction of c-Myc in E1A-expressing cells contributes to the induction of host DNA replication. Together, our results suggest that the E1A oncogene-induced cellular DNA replication stress is due to dramatically altered cellular replication events and that E1A-induced c-Myc may contribute to these events.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号