首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background  

Most cancer cells, in contrast to normal differentiated cells, rely on aerobic glycolysis instead of oxidative phosphorylation to generate metabolic energy, a phenomenon called the Warburg effect.  相似文献   

4.
The principal route of oxygen utilization in the respiratory burst of fungally infected plants was determined from stoichiometries of the uptake and electronic reduction of oxygen in cotton cells exposed to Aspergillus favus walls. Using 2,2-azino-di-(3-ethyl-benzothiazoline-6-sulfonic acid) and epinephrine as redox reagents to manipulate oxygen transitions, we found that oxygen consumption doubled when superoxide disproportionation was abolished and was abolished when disproportionation doubled. Of four possible pathways for oxygen consumption, only monovalent reduction of molecular oxygen to superoxide was consistent with this inversely proportional relationship. According to the observed rate of oxygen consumption in this pathway and in the absence of competition to disproportionation of superoxide, infected cells are capable of generating intracellular concentrations of 1 M hydrogen peroxide in 13 min.  相似文献   

5.
Evidence is presented that the nitroxide free radical, TEMPO, at concentrations commonly used to prevent oxidative damage, increases the intracellular hydrogen peroxide concentration. To investigate the origin of this increased hydrogen peroxide concentration, we have incubated various human tumor cell lines with compounds interfering with the generation of active oxygen metabolites. Sodium azide, inhibitor of the respiratory chain, the iron-chelating agent desferrioxamine, superoxide dismutase and catalase had no effect on the hydrogen peroxide concentration. Metyrapone, inhibitor of the cytochrome P450 system, was demonstrated to decrease, but not completely prevent, the hydrogen peroxide production. N-ethylmaleimide, a sulphydryl-bond alkylating agent, was able to completely prevent the increased hydrogen peroxide production. We conclude that, by increasing the cellular hydrogen peroxide concentration, TEMPO exerts a pro-oxidant effect. This increase in hydrogen peroxide production seems to be mediated by the induction of oxidase activity in the cytochrome P450 system, but other cellular systems involved in electron transport may also play a role.  相似文献   

6.
Human umbilical vein endothelial cells were exposed in culture to hydrogen peroxide (H2O2), keeping them close to physiological conditions (high cell density, high serum content, H2O2 concentration not over 500 µM). Cell viability was assessed by flow cytometry using simultaneous staining with the fluorescent dye PO-PRO-1 to detect early apoptotic cells and DRAQ7 to detect late apoptotic and necrotic cells. The data obtained suggest that the primary mechanism of the cytotoxic response to H2O2 is apoptosis. The critical concentration of H2O2 causing death in a dense monolayer is 250 µM. Lower H2O2 concentrations (up to 200 µM) cause death of individual cells. The population of endothelial cell retains viability and response to calcium activating agonists does not change compared to control cells.  相似文献   

7.
Chronic inflammation often precedes or accompanies a substantial number of cancers. Indeed, anti-inflammatory therapies have shown efficacy in cancer prevention and treatment. The exact mechanisms that turn a wound healing process into a cancer precursor are topics of intense research. A pathogenic link has been identified between inflammatory mediators, inflammation related gene polymorphisms and carcinogenesis. Animal models of cancer have been instrumental in demonstrating the diversity of mechanisms through which every tumor compartment and tumor stage may be affected by the underlying inflammatory process. In this review, we focus on the interaction between chronic inflammation, tumor stem cells and the tumor microenvironment. We summarize the proposed mechanisms that lead to the recruitment of bone marrow derived cells and explore the genetic and epigenetic alterations that may occur in inflammation associated cancers.  相似文献   

8.
We have employed confocal laser scanning microscopy to investigate how intracellular free calcium concentration ([Ca2+]i) is influenced by hydrogen peroxide (H2O2) in collagenase-dispersed mouse pancreatic acinar cells. In the absence of extracellular calcium, treatment of cells with increasing concentrations of H2O2 resulted in an increase in [Ca2+]i, indicating the release of calcium from intracellular stores. Micromolar concentrations of H2O2 induced an oscillatory pattern, whereas 1 mmol H2O2/L caused a slow and sustained increase in [Ca2+]i. H2O2 abolished the typical calcium release stimulated by thapsigargin or by the physiological agonist cholecystokinin octapeptide (CCK-8). Depletion of either agonist-sensitive or mitochondrial calcium pools was unable to prevent calcium release induced by 1 mmol H2O2/L, but depletion of both stores abolished it. Additionally, lower H2O2 concentrations were able to release calcium only after depletion of mitochondrial calcium stores. Treatment with either the phospholipase C inhibitor U-73122 or the inhibitor of the inositol 1,4,5-trisphosphate (IP3) receptor xestospongin C did not modify calcium release from the agonist-sensitive pool induced by 100 micromol H2O2/L, suggesting the involvement of a mechanism independent of IP3 generation. In addition, H2O2 reduced amylase release stimulated by CCK-8. Finally, either the H2O2-induced calcium mobilization or the inhibitory effect of H2O2 on CCK-8-induced amylase secretion was abolished by dithiothreitol, a sulphydryl reducing agent. We conclude that H2O2 at micromolar concentrations induces calcium release from agonist-sensitive stores, and at millimolar concentrations H2O2 can also evoke calcium release from the mitochondria. The action of H2O2 is mediated by oxidation of sulphydryl groups of calcium ATPases independently of IP3 generation.  相似文献   

9.
10.
The purpose of this study was to investigate the adaptive mechanisms of hydrogen peroxide-supersensitive AML cells against the reactive oxygen species (ROS). Their scavenging capacity against ROS was determined using a fluorometric probe in the doxorubicin-resistant AML-2/DX100 cell characterized by the down-regulation of catalase. AML-2/DX100 cells had more scavenging capacity against endogenous pro-oxidants than did the parental cells AML-2/WT, suggesting that an anti-oxidant adaptation against ROS occurred. cDNA microarrays for 8000 human genes revealed that among 21 anti-oxidant genes, each four gene was up- and down-regulated more than 1.5-fold in AML-2/DX100 compared with AML-2/WT. The mRNA expression of glutathione S-transferase Pi, peroxiredoxin 2, thioredoxin 2, and glutaredoxin was elevated whereas that of peroxiredoxin 3, metallothionein-1F, superoxide dismutase 2, and thioredoxin reductase 1 was depressed. The result indicates that the down-regulation of certain anti-oxidant mechanisms can be compensated for by the up- and down-regulation of the other anti-oxidant mechanisms.  相似文献   

11.
ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells   总被引:19,自引:0,他引:19  
Increased synthesis and redistribution of the phytohormone abscisic acid (ABA) in response to water deficit stress initiates an intricate network of signalling pathways in guard cells leading to stomatal closure. Despite the large number of ABA signalling intermediates that are known in guard cells, new discoveries are still being made. Recently, the reactive oxygen species hydrogen peroxide (H2O2) and the reactive nitrogen species nitric oxide (NO) have been identified as key molecules regulating ABA-induced stomatal closure in various species. As with many other physiological responses in which H2O2 and NO are involved, stomatal closure in response to ABA also appears to require the tandem synthesis and action of both these signalling molecules. Recent pharmacological and genetic data have identified NADPH oxidase as a source of H2O2, whilst nitrate reductase has been identified as a source of NO in Arabidopsis guard cells. Some signalling components positioned downstream of H2O2 and NO are calcium, protein kinases and cyclic GMP. However, the exact interaction between the various signalling components in response to H2O2 and NO in guard cells remains to be established.  相似文献   

12.
This study investigates the role of salicylic acid (SA), hydrogen peroxide (H2O2) and calcium chloride (CaCl2) singly or in combination, in inducing naked oat plant tolerance to sodium chloride (NaCl). Two-week-old naked oat plants were pretreated with both single and double of 0.5 mM SA, 0.5 mM H2O2 and 5 mM CaCl2 by adding them to the culture solution for 24 h. At the end of the pretreatment, the plants were subjected to 200 mM NaCl exposure for 7 days. Data were collected on plant biomass, H2O2 level, antioxidant enzyme activity, non-enzymatic antioxidant content and malondialdehyde (MDA) content. Results showed that exposure to salt significantly inhibited plant growth, and the shoot and root dry weights were reduced 47.5% and 63.4%, and the H2O2 levels elevated 5.8 and 2.4 times in comparison with those in the control, respectively. Under the saline stress, the activities of superoxide dismutase (SOD) and catalase (CAT) were induced, but the contents of ascorbic acid (AA) and glutathione (GSH) decreased, and MDA largely accumulated. The various pretreatments efficiently counteracted the salt-caused growth inhibition, especially with H2O2 + CaCl2 the shoot and root dry weights reduced only 9.4% and 24.4% of the non salt-stressed plants. The determination of endogenous H2O2 level demonstrated that the pretreatments induced H2O2 accumulation, with H2O2 + CaCl2 being most efficient, but the effect was transient. After 7 days of saline stress, the H2O2 contents in the pretreated shoots and roots accounted for 23.7–41.8% and 31.7–57.3% of the non-pretreated plants, varying according to the different pretreatments. Under saline stress, SOD and CAT further increased, AA and GSH maintained higher levels and MDA decreased in the pretreated plants compared to the untreated plants. With application of diphenylene iodonium (DPI) during the pretreatment, which inhibited the accumulation of H2O2, the ameliorative effect of the pretreatment on salt-caused plant growth inhibition was reduced. However, applied DPI at the immediate end of the pretreatment did not alter its favorable role, indicating a H2O2 peak formed at the early time of saline stress might play an important role in regulating plant tolerance to saline stress.  相似文献   

13.
Inaccessibility of drugs to poorly vascularized strata of tumor is one of the limiting factors in cancer therapy. With the advent of bystander effect (BE), it is possible to perpetuate the cellular damage from drug-exposed cells to the unexposed ones. However, the role of infiltrating tumor-associated macrophages (TAMs), an integral part of the tumor microenvironment, in further intensifying BE remains obscure. In the present study, we evaluated the effect of mitomycin C (MMC), a chemotherapeutic drug, to induce BE in cervical carcinoma. By using cervical cancer cells and differentiated macrophages, we demonstrate that MMC induces the expression of FasL via upregulation of PPARγ in both cell types (effector cells) in vitro, but it failed to induce bystander killing in cervical cancer cells. This effect was primarily owing to the proteasomal degradation of death receptors in the cervical cancer cells. Pre-treatment of cervical cancer cells with MG132, a proteasomal inhibitor, facilitates MMC-mediated bystander killing in co-culture and condition medium transfer experiments. In NOD/SCID mice bearing xenografted HeLa tumors administered with the combination of MMC and MG132, tumor progression was significantly reduced in comparison with those treated with either agent alone. FasL expression was increased in TAMs, and the enhanced level of Fas was observed in these tumor sections, thereby causing increased apoptosis. These findings suggest that restoration of death receptor-mediated apoptotic pathway in tumor cells with concomitant activation of TAMs could effectively restrict tumor growth.Owing to the heterogeneous nature and scanty vascularization, the access of anticancer regimen to all strata of the tumor is one of the major challenges in cancer therapy. Current response rate to chemotherapy is far from desirable and warrants formulating the strategies to enhance specificity and efficacy of the anticancer regimens. Of late, the phenomenon of bystander effect (BE), which refers to transmission of death signals from the drug-exposed cells to the unexposed cells, is being explored to improve the therapeutic response. Although BE has been well documented in radiotherapy1, 2 and experimental approaches of gene therapy,3, 4 very limited information is available with respect to conventional chemotherapeutic drugs. We have previously demonstrated the chemotherapy-induced bystander killing in breast cancer cells5 and hepatocellular carcinoma cells.6 Recently, other groups also have demonstrated the occurrence of chemotherapy-induced BE in breast cancer7 and lung cancer,8, 9 which is in agreement with our studies. BE has been shown to be dependent on cell type and class of drugs,6 and the role of tumor microenvironment in response to chemotherapeutic drug-induced BE is poorly understood.Cervical cancer is one of the most common solid tumors. Mitomycin C (MMC), a DNA alkylating agent, has been widely used in this malignancy as a constituent of combination therapy.10 From the pharmacological point of view, MMC is effective at relatively low dose with minimal organ-associated toxicity11 and it has been shown to activate innate immunity.12 However, therapeutic efficacy of MMC principally depends on other drug types in combination therapy.13 Therefore, a well-designed strategy that could enhance the efficacy of MMC is desirable. MMC has been demonstrated to induce BE in hepatocellular carcinoma, but not in cervical cancer cells.6 Although the precise mechanisms of bystander killing remain elusive, we have previously reported the involvement of death ligands,5, 6 which was later supported by other studies.7, 8, 9 The ability of cancer cells to escape programmed cell death has a critical role in the survival of cancer cells and tumor progression. Despite the presence of cellular apoptotic factors, cancer cells reprogram their molecular events and signaling to evade apoptosis.14 Moreover, it has been reported that exposure to proteasomal inhibitor inhibits the growth of various cancer cells and sensitize them to death ligand-mediated death by stabilizing death receptors.15, 16, 17 Considering these notions, we speculated that non-functionality of death receptors could be one of the possible factors associated with defective BE in cervical cancer. We, therefore, hypothesized that treating cervical cancer cells with combination of MMC and proteasomal inhibitor could elicit BE, and thereby may significantly improve the therapeutic outcome.Till date, studies explicate cancer cells exposed to chemotherapy as the effector cells in inducing bystander-mediated killing. However, owing to the heterogeneous nature of cellular population in tumor, other cellular components are also likely to have a key role in inducing BE. Tumor microenvironment consists of a heterogeneous mass of malignant as well as nonmalignant cells. The nonmalignant cells include endothelial, fibroblast and immune cells that establish multitude of interactions among themselves and also with malignant cells.9 Macrophages are the most abundant immune cells present in tumors, also termed as tumor-associated macrophages (TAMs).18 TAMs are differentiated monocytes that infiltrate the tumor microenvironment, and are exposed to chemotherapeutic regimen. Studies have demonstrated that TAMs could account for approximately more than 60% of tumor mass in some cancers.19, 20, 21 TAMs exposed to radiations2 and chemotherapy22 have been shown to have a significant role in inducing BE. Studies support the notion that targeting TAMs could improve the therapeutic index of various drugs.10, 23 Increased sensitivity to cyclophosphamide14 and cisplatin24 has been shown in co-culture system involving cancer cells and macrophages. Under chemotherapy, increased recruitment of macrophages with enhanced expression of tumoricidal factors like perforin and granzyme,22 death ligands10 or ROS 25 has been reported in tumors. Therefore, we speculated that BE could further be amplified by infiltrating macrophages resulting in enhanced therapeutic efficacy of anticancer regimens. In the present study, we evaluated combination effect of MMC and MG132 in enhancing bystander killing of cancer cells in vitro and in vivo, in part, through the involvement of cancer cells and TAMs. Herein, we demonstrate that stabilization of Fas on cervical cancer cells facilitates dramatic reduction in tumor progression as a consequence of increase in apoptosis. This study could be helpful in designing novel therapeutic strategies in treating cancer by involving proteasomal inhibitors in combination with chemotherapeutic drugs that specifically activate death receptor-mediated killing.  相似文献   

14.
Neural cancers display cellular hierarchies with self-renewing tumorigenic cancer stem cells (CSCs) at the apex. Instructive cues to maintain CSCs are generated by both intrinsic networks and the niche microenvironment. The CSC-microenvironment relationship is complex, as CSCs can modify their environment and extrinsic forces induce plasticity in the cellular hierarchy.  相似文献   

15.
Greater than 90% of heat-stressed cells of Salmonella senftenberg failed to grow on trypticase soy agar. Adding to this medium compounds which are capable of degrading hydrogen peroxide allowed growth of the heat-injured cells. These compounds did not stimulate growth of heated cells of Streptococcus faecium, an organism which does not possess catalase.  相似文献   

16.
To study the role of the cellular microenvironment in tumor promotion and progression, transformed cells of rat embryonic fibroblasts (CL-1 clone) were transplanted into transgenic immunodeficient mice and cells of the formed tumor were converted into culture (CL-1-1 cells). Cells before and after transplantation were compared in morphology, growth rate, and permeability of intercellular gap junction. CL-1-1 cells were shown to have a changed morphology, to grow faster than the CL-1 cell, and to have no contact inhibition. In the G1 phase of the cell cycle, there were many more CL-1 than CL-1-1 cells, whereas, in the G2 and M phases, CL-1-1 cells were predominant. The permeabilities of the gap junction in the CL-1 and CL-1-1 cells were approximately the same. It was concluded that the cell microenvironment can stimulate tumor promotion and tumor progression upon transplantation of transformed cells into immunodeficient animals.  相似文献   

17.
We recently showed that two photoproducts of merocyanine 540, C2 and C5, triggered cytochrome C release; however, C5 was inefficient in inducing caspase activity and apoptosis in leukemia cells, unlike C2. Here we show that HL60 cells acidified upon exposure to C2 but not C5. The intracellular drop in pH and caspase activation were dependent upon hydrogen peroxide production, and were inhibited by scavengers of hydrogen peroxide. On the contrary, caspase inhibitors did not block hydrogen peroxide production. In turn, increased intracellular hydrogen peroxide concentration was downstream of superoxide anion produced within 2 h of exposure to C2. Inhibitor of NADPH oxidase diphenyleneiodonium neither inhibited superoxide production nor caspase activation triggered by C2. However, exposure of purified mitochondria to C2 resulted in significantly increased superoxide production. Furthermore, cytochrome C release from isolated mitochondria induced by C2 was completely inhibited in the presence of scavengers of hydrogen peroxide. Contrarily, scavenging hydrogen peroxide had no effect on the cyclosporin A-sensitive mitochondrial permeability transition induced by C5. Our data suggest a scenario where drug-induced hydrogen peroxide production induces intracellular acidification and release of cytochrome C, independent of the inner membrane pore, thereby creating an intracellular environment permissive for caspase activation.  相似文献   

18.
19.
Short-term treatment of potato tuber (Solanum tuberosum L.) dises with CdCl2 (1mM) induced an oxidative stress, manifested by higher levels of H2O2, and activated the synthesis of phytochclatins ((γ-Glu-Cys)n-Gly): PC2, PC3 and PC4. If in the tissues with a lower GSH level, the oxidative stress was induced by treatment with 3-aminotriazol (AT), or with AT and H2O2, the elevation of H2O2 and GSH levels and then some accumulation of thiols, including PC2, PC3 and PC4, were observed. However, this increase of PC concentration was considerably lower when compared with the effects brought about by Cd+2 treatment. If such a procedure of evoking subsequent moderate oxidative stress in tissues preceded Cd-treatment, a marked limitation of PC synthesis was observed. The presented results support the role of H2O2 as the second messenger in activating GSH synthesis and thus suggest a possibility of redox type regulation mechanism of PCs synthesis.  相似文献   

20.
Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号