首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Neutral amino acid transporters of the SLC6 family are expressed at the apical membrane of kidney and/or small intestine, where they (re-)absorb amino acids into the body.?In this review we present the results concerning the dependence of their apical expression with their association to partner proteins. We will in particular focus on the situation of B0AT1 and B0AT3, that associate with members of the renin-angiotensin system (RAS), namely Tmem27 and angiotensin-converting enzyme 2 (ACE2), in a tissue specific manner.?The role of this association in relation to the formation of a functional unit related to Na+ or amino acid transport will be assessed. We will conclude with some remarks concerning the relevance of this association to Hartnup disorder, where some mutations have been shown to differentially interact with the partner proteins.  相似文献   

2.
Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B(0)AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Na(+)-dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking B(0)AT1 showed a reduced body weight. When adapted to a standard 20% protein diet, B(0)AT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation.  相似文献   

3.
Leptin is secreted by gastric mucosa and is able to reach the intestinal lumen where its receptors are located in the apical membrane of the enterocytes. We have previously demonstrated that apical leptin inhibits sugar and amino acids uptake in vitro and glucose absorption in vivo. Since leptin receptors are also expressed in the basolateral membrane of the enterocytes, the aim of the present work was to investigate whether leptin acting from the basolateral side could also regulate amino acid uptake. Tritiated Gln and β-Ala were used to measure uptake into Caco-2 cells grown on filters, in the presence of basal leptin at short incubation times (5 and 30 min) and after 6 h of preincubation with the hormone. In order to compare apical and basal leptin effect, Gln and β-Ala uptake was measured in the presence of leptin acting from the apical membrane also in cells grown on filters. Basal leptin (8 mM) inhibited by ~15–30 % the uptake of 0.1 mM Gln and 1 mM β-Ala quickly, after 5 min exposure, and the effect was maintained after long preincubation periods. Apical leptin had the same effect. Moreover, the inhibition was rapidly and completely reversed when leptin was removed from the apical or basolateral medium. These results extend our previous findings and contribute to the vision of leptin as an important hormonal signal for the regulation of intestinal absorption of nutrients.  相似文献   

4.
Resorption of amino acids in kidney and intestine is mediated by transporters, which prefer groups of amino acids with similar physico-chemical properties. It is generally assumed that most neutral amino acids are transported across the apical membrane of epithelial cells by system B(0). Here we have characterized a novel member of the Na(+)-dependent neurotransmitter transporter family (B(0)AT1) isolated from mouse kidney, which shows all properties of system B(0). Flux experiments showed that the transporter is Na(+)-dependent, electrogenic, and actively transports most neutral amino acids but not anionic or cationic amino acids. Superfusion of mB(0)AT1-expressing oocytes with neutral amino acids generated inward currents, which were proportional to the fluxes observed with labeled amino acids. In situ hybridization showed strong expression in intestinal microvilli and in the proximal tubule of the kidney. Expression of mouse B(0)AT1 was restricted to kidney, intestine, and skin. It is generally assumed that mutations of the system B(0) transporter underlie autosomal recessive Hartnup disorder. In support of this notion mB(0)AT1 is located on mouse chromosome 13 in a region syntenic to human chromosome 5p15, the locus of Hartnup disorder. Thus, the human homologue of this transporter is an excellent functional and positional candidate for Hartnup disorder.  相似文献   

5.
In polarized epithelial cells, sorting of proteins and lipids to the apical or basolateral domain of the plasma membrane can occur via direct or indirect (transcytotic) pathways from the trans Golgi network (TGN). The 'rafts' hypothesis postulates that the key event for direct apical sorting of some transmembrane proteins and the majority of GPI-anchored proteins depends on their association with glycosphingolipid and cholesterol enriched microdomains (rafts). However, the mechanism of indirect sorting to the apical membrane is not clear. The polyimmunoglobulin receptor (pIgR) is one of the best studied proteins that follow the transcytotic pathway. It is normally delivered from the TGN to the basolateral surface of polarized Madin–Darby Canine Kidney (MDCK) cells from where it transports dIgA or dIgM to the apical surface. We have studied the intracellular trafficking of pIgR in Fischer rat thyroid cells (FRT), and have investigated the sorting machinery involved in transcytosis of this receptor in both FRT and MDCK cells. We found that, in contrast with MDCK cells, a significant amount (∼30%) of pIgR reaches the apical surface by a direct pathway. Furthermore, in both cell lines it does not associate with Triton X-100-insoluble microdomains, suggesting that at least in these cells 'rafts' are not involved in basolateral to apical transcytosis.  相似文献   

6.
End products of digestion are absorbed by the body through the action of transporter proteins expressed on the apical membrane of intestinal epithelial cells. We investigated the mRNA abundance and distribution of a peptide transporter (PepT1), a glucose transporter (SGLT1), two amino acid transporters (NBAT and b(o,+)AT), and a digestive enzyme, aminopeptidase N (APN), in the intestinal tract of black bears (Ursus americanus). Intestinal total RNA was isolated from 10 bears and abundance of PepT1, SGLT1, NBAT, b(o,+)AT, and APN mRNA were determined by Northern blots. Abundance of PepT1 (P<0.05), APN (P<0.05), and SGLT1 (P<0.0001) changed quadratically from the proximal to distal intestine with abundance being greatest in the midregion. Abundance of b(o,+)AT mRNA increased linearly (P<0.05) from the proximal to distal intestine. The number of molecules of mRNA/ng of total RNA for each gene was determined using Real-Time PCR. PepT1 mRNA was present at 10-fold or greater levels than amino acid transporter mRNA in all segments of the intestine, suggesting that di- and tripeptides constitute a major form in which amino acids are absorbed in the black bear. The abundance of NBAT and b(o,+)AT mRNA was greater towards the distal intestine, suggesting a role in salvaging unabsorbed amino acids.  相似文献   

7.
8.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.  相似文献   

9.
Mutations in the main intestinal and kidney luminal neutral amino acid transporter B(0)AT1 (Slc6a19) lead to Hartnup disorder, a condition that is characterized by neutral aminoaciduria and in some cases pellagra-like symptoms. These latter symptoms caused by low-niacin are thought to result from defective intestinal absorption of its precursor l-tryptophan. Since Ace2 is necessary for intestinal B(0)AT1 expression, we tested the impact of intestinal B(0)AT1 absence in ace2 null mice. Their weight gain following weaning was decreased, and Na(+)-dependent uptake of B(0)AT1 substrates measured in everted intestinal rings was defective. Additionally, high-affinity Na(+)-dependent transport of l-proline, presumably via SIT1 (Slc6a20), was absent, whereas glucose uptake via SGLT1 (Slc5a1) was not affected. Measurements of small intestine luminal amino acid content following gavage showed that more l-tryptophan than other B(0)AT1 substrates reach the ileum in wild-type mice, which is in line with its known lower apparent affinity. In ace2 null mice, the absorption defect was confirmed by a severalfold increase of l-tryptophan and of other neutral amino acids reaching the ileum lumen. Furthermore, plasma and muscle levels of glycine and l-tryptophan were significantly decreased in ace2 null mice, with other neutral amino acids displaying a similar trend. A low-protein/low-niacin diet challenge led to differential changes in plasma amino acid levels in both wild-type and ace2 null mice, but only in ace2 null mice to a stop in weight gain. Despite the combination of low-niacin with a low-protein diet, plasma niacin concentrations remained normal in ace2 null mice and no pellagra symptoms, such as photosensitive skin rash or ataxia, were observed. In summary, mice lacking Ace2-dependent intestinal amino acid transport display no total niacin deficiency nor clear pellagra symptoms, even under a low-protein and low-niacin diet, despite gross amino acid homeostasis alterations.  相似文献   

10.
The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B(0)AT1 [broad neutral ((0)) amino acid transporter 1; SLC6A19 (solute carrier family 6 member 19)] in the intestine and by B(0)AT1 and B(0)AT3 (SLC6A18) in the kidney. Immunoprecipitation and Blue native electrophoresis of intestinal brush-border membrane proteins revealed that B(0)AT1 forms complexes with two peptidases, APN (aminopeptidase N/CD13) and ACE2 (angiotensin-converting enzyme 2). Physiological characterization of B(0)AT1 expressed together with these peptidases in Xenopus laevis oocytes revealed that APN increased the substrate affinity of the transporter up to 2.5-fold and also increased its surface expression (V(max)). Peptide competition experiments, in silico modelling and site-directed mutagenesis of APN suggest that the catalytic site of the peptidase is involved in the observed changes of B(0)AT1 apparent substrate affinity, possibly by increasing the local substrate concentration. These results provide evidence for the existence of B(0)AT1-containing digestive complexes in the brush-border membrane, interacting differentially with various peptidases, and responding to the dynamic needs of nutrient absorption in the intestine and kidney.  相似文献   

11.
12.
Variations in GC content between genomes have been extensively documented. Genomes with comparable GC contents can, however, still differ in the apportionment of the G and C nucleotides between the two DNA strands. This asymmetric strand bias is known as GC skew. Here, we have investigated the impact of differences in nucleotide skew on the amino acid composition of the encoded proteins. We compared orthologous genes between animal mitochondrial genomes that show large differences in GC and AT skews. Specifically, we compared the mitochondrial genomes of mammals, which are characterized by a negative GC skew and a positive AT skew, to those of flatworms, which show the opposite skews for both GC and AT base pairs. We found that the mammalian proteins are highly enriched in amino acids encoded by CA-rich codons (as predicted by their negative GC and positive AT skews), whereas their flatworm orthologs were enriched in amino acids encoded by GT-rich codons (also as predicted from their skews). We found that these differences in mitochondrial strand asymmetry (measured as GC and AT skews) can have very large, predictable effects on the composition of the encoded proteins.  相似文献   

13.
14.
15.
The distributions of amino acids at most-conserved sites nearest catalytic/active centers (C/AC) in 4,645 sequences of ten enzymes of the glycolytic Embden-Meyerhof-Parnas pathway in Archaea, Bacteria and Eukaryota are similar to the proposed temporal order of their appearance on Earth. Glycine, isoleucine, leucine, valine, glutamic acid and possibly lysine often described as prebiotic, i.e., existing or occurring before the emergence of life, were localized in positional and conservational defined aggregations in all enzymes of all Domains. The distributions of all 20 biologic amino acids in most-conserved sites nearest their C/ACs were quite different either from distributions in sites less-conserved and further from their C/ACs or from all amino acids regardless of their position or conservation. The major concentrations of glycine, e.g., perhaps the earliest prebiotic amino acid, occupies ≈16 % of all the most-conserved sites within a volume of ≈7–8 Å radius from their C/ACs and decreases linearly towards the molecule’s peripheries. Spatially localized major concentrations of isoleucine, leucine and valine are in the mid-conserved and mid-distant sites from their C/ACs in protein interiors. Lysine and glutamic acid comprise ≈25–30 % of all amino acids within an irregular volume bounded by ≈24–28 Å radii from their C/ACs at the most-distant least-conserved sites. The unreported characteristics of these amino acids: their spatially and conservationally identified concentrations in Archaea, Bacteria and Eukaryota, suggest some common structural organization of glycolytic enzymes that may be relevant to their evolution and that of other proteins. We discuss our data in relation to enzyme evolution, their reported prebiotic putative temporal appearances on Earth, abundances, biological “cost”, neighbor-sequence preferences or “ordering” and some thermodynamic parameters.  相似文献   

16.
New Glycoprotein-Associated Amino Acid Transporters   总被引:2,自引:0,他引:2  
The L-type amino acid transporter LAT1 has recently been identified as being a disulfide-linked ``light chain' of the ubiquitously expressed glycoprotein 4F2hc/CD98. Several LAT1-related transporters have been identified, which share the same putative 12-transmembrane segment topology and also associate with the single transmembrane domain 4F2hc protein. They display differing amino acid substrate specificities, transport kinetics and localizations such as, for instance, y+LAT1 which is localized at the basolateral membrane of transporting epithelia, and the defect of which causes lysinuric protein intolerance. The b0,+AT transporter which associates with the 4F2hc-related rBAT protein to form the luminal high-affinity diamino acid transporter defective in cystinuria, belongs to the same family of glycoprotein-associated amino acid transporters (gpaATs). These glycoprotein-associated transporters function as amino acid exchangers. They extend the specificity range of vectorial amino acid transport when located in the same membrane as carriers that unidirectionally transport one of the exchanged substrates. gpaATs belong to a phylogenetic cluster within the amino acid/polyamine/choline (APC) superfamily of transporters. This cluster, which we designate the LAT family (named after its first vertebrate member), includes some members from nematodes, yeast and bacteria. The latter of these proteins presumably lack association with a second subunit. In this review, we focus on the animal members of the LAT cluster that form, together with some of the nematode members, the family of glycoprotein-associated amino acid transporters (gpaAT family). Received: 20 July 1999/Revised: 7 September 1999  相似文献   

17.
We provide evidence here that b(0,+) amino acid transporter (b(0, +)AT) interacts with 4F2 heavy chain (4F2hc) as well as with the protein related to b(0,+) amino acid transporter (rBAT) to constitute functionally competent b(0,+)-like amino acid transport systems. This evidence has been obtained by co-expression of b(0, +)AT and 4F2hc or b(0,+)AT and rBAT in human retinal pigment epithelial cells and in COS-1 cells. The ability to interact with 4F2hc and rBAT is demonstrable with mouse b(0,+)AT as well as with human b(0,+)AT. Even though both the 4F2hc x b(0,+)AT complex and the rBAT x b(0,+)AT complex exhibit substrate specificity that is characteristic of system b(0,+), these two complexes differ significantly in substrate affinity. The 4F2hc x b(0,+)AT complex has higher substrate affinity than the rBAT x b(0,+)AT complex. In situ hybridization studies demonstrate that the regional distribution pattern of mRNA in the kidney is identical for b(0,+)AT and 4F2hc. The pattern of rBAT mRNA expression is different from that of b(0,+)AT mRNA and 4F2hc mRNA, but there are regions in the kidney where b(0,+)AT mRNA expression overlaps with rBAT mRNA expression as well as with 4F2hc mRNA expression.  相似文献   

18.
19.
Thyroid peroxidase (TPO), which located on the apical membrane surface of thyrocytes, is the key enzyme involved in thyroid hormone synthesis, mainly catalyses the iodination of tyrosine residues and the coupling of iodotyrosines on thyroglobulin to form thyroxine and triiodothyronine. The objectives of this study were to identify genetic polymorphisms of the chicken TPO gene and to analyze potential association between single nucleotide polymorphisms (SNPs) and growth and carcass traits in chicken. Partial sequences of TPO gene were cloned firstly. The nucleotide sequence was found to have 72 % identity with that of humans. The chicken TPO amino acid sequence was 71 %. Through polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing methods, three novel mutations of the chicken TPO gene were detected in the F2 resource population from Gushi chickens and Anka broilers. The association analysis indicated that all of the three SNPs showed association with chicken growth at different periods. The g.29996C>T polymorphisms was significantly associated with body weight, breast bone length, pectoral angle at 12 weeks, claw weight and leg muscle weight (P < 0.05). In addition, individuals with the TT genotype had higher value for almost all the traits than CC and CT genotype. Meanwhile for CLW, the additive effects were significant (P < 0.05). Hence, we suggest that genotype TT can be regarded as a potential molecular marker for later growth and carcass traits in chicken.  相似文献   

20.
We report a comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in 235 high-resolution structures of integral membrane proteins. The properties of 1551 transmembrane helices in the structures were compared with those obtained by analysis of the same amino acid sequences using topology prediction tools. Explanations for the 81 (5.2%) missing or additional transmembrane helices in the prediction results were identified. Main reasons for missing transmembrane helices were mis-identification of N-terminal signal peptides, breaks in α-helix conformation or charged residues in the middle of transmembrane helices and transmembrane helices with unusual amino acid composition. The main reason for additional transmembrane helices was mis-identification of amphipathic helices, extramembrane helices or hairpin re-entrant loops. Transmembrane helix length had an overall median of 24 residues and an average of 24.9 ± 7.0 residues and the most common length was 23 residues. The overall content of residues in transmembrane helices as a percentage of the full proteins had a median of 56.8% and an average of 55.7 ± 16.0%. Amino acid composition was analysed for the full proteins, transmembrane helices and extramembrane regions. Individual proteins or types of proteins with transmembrane helices containing extremes in contents of individual amino acids or combinations of amino acids with similar physicochemical properties were identified and linked to structure and/or function. In addition to overall median and average values, all results were analysed for proteins originating from different types of organism (prokaryotic, eukaryotic, viral) and for subgroups of receptors, channels, transporters and others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号