首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe an automated method to isolate mutant Caenorhabditis elegans that do not appropriately execute cellular differentiation programs. We used a fluorescence-activated sorting mechanism implemented in the COPAS Biosort machine to isolate mutants with subtle alterations in the cellular specificity of GFP expression. This methodology is considerably more efficient than comparable manual screens and enabled us to isolate mutants in which dopamine neurons do not differentiate appropriately.  相似文献   

2.
The cell division and differentiation events that occur during the development of the nematode Caenorhabditis elegans are nearly identical between different individuals, a feature that distinguishes this organism from larger and more complex metazoans, such as humans and Drosophila. In view of this discrepancy, it might be expected that the regulation of cell growth, division and differentiation in C. elegans would involve mechanisms separate from those utilized in larger animals. However, the results of recent genetic, molecular and cellular studies indicate that C. elegans employs an arsenal of developmental regulatory mechanisms quite similar to those wielded by its arthropod and vertebrate relatives. Thus, the nematode system is providing both novel and complementary insights into the general problem of how growth and patterning events are integrated in development. This review offers a general perspective on the regulation of cell division and growth in C. elegans, emphasizing recent studies of these crucial aspects of development.  相似文献   

3.
Gastrulation in C. elegans embryos involves formation of a blastocoel and the ingression of surface cells into the blastocoel. Mutations in the par-3 gene cause abnormal separations between embryonic cells, suggesting that the PAR-3 protein has a role in blastocoel formation. In normal development, PAR proteins localize to either the apical or basal surfaces of cells prior to blastocoel formation; we demonstrate that this localization is determined by cell contacts. Cells that ingress into the blastocoel undergo an apical flattening associated with an apical concentration of non-muscle myosin. We provide evidence that ingression times are determined by genes that control cell fate, though interactions with neighboring cells can prevent ingression.  相似文献   

4.
Recent findings suggest that C. elegans, albeit displaying an invariant cell lineage for embryonic development, uses the same basic strategy for embryogenesis as other organisms. The early embryo is regionalised by cell-cell interactions.  相似文献   

5.
6.
7.
8.
9.
Neuronal cell fates are specified by a hierarchy of events mediated by cell-intrinsic determinants and cell-cell interactions. The determination of cell fate can be subdivided into three general steps. First, cell fate is restricted by the cell's position in the animal. For example, neurons are specified along the anterior-posterior body axis through the action of the Hox genes lin-39, mab-5, and egl-5. Second, a decision is made to generate a particular cell type, such as the progenitor of a neurogenic lineage as opposed to that of an epidermal lineage. Among the genes that influence this decision is the proneural gene lin-32. Third, characteristics of a particular cell type are specified. For example, in a neurogenic lineage, a decision may be made to generate a specific neuron type such as a sensory or motor neuron. Genes that affect neuronal fate can act in different ways to influence the development of different types of neurons. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Genetic control of programmed cell death in the nematode C. elegans   总被引:41,自引:0,他引:41  
H M Ellis  H R Horvitz 《Cell》1986,44(6):817-829
The wild-type functions of the genes ced-3 and ced-4 are required for the initiation of programmed cell deaths in the nematode Caenorhabditis elegans. The reduction or loss of ced-3 or ced-4 function results in a transformation in the fates of cells that normally die; in ced-3 or ced-4 mutants, such cells instead survive and differentiate, adopting fates that in the wild type and associated with other cells. ced-3 and ced-4 mutants appear grossly normal in morphology and behavior, indicating that programmed cell death is not an essential aspect of nematode development. The genes ced-3 and ced-4 define the first known step of a developmental pathway for programmed cell death, suggesting that these genes may be involved in determining which cells die during C. elegans development.  相似文献   

11.
12.
Sex, cell death, and the genome of C. elegans.   总被引:3,自引:0,他引:3  
J Hodgkin 《Cell》1999,98(3):277-280
  相似文献   

13.
14.
15.
Memory and the expression of learned behaviors by an organism are often triggered by contextual cues that resemble those that were present when the initial learning occurred. In state-dependent learning, the cue eliciting a learned behavior is a neuroactive drug; behaviors initially learned during exposure to centrally acting compounds such as ethanol are subsequently recalled better if the drug stimulus is again present during testing. Although state-dependent learning is well documented in many vertebrate systems, the molecular mechanisms underlying state-dependent learning and other forms of contextual learning are not understood. Here we demonstrate and present a genetic analysis of state- dependent adaptation in Caenorhabditis elegans. C. elegans normally exhibits adaptation, or reduced behavioral response, to an olfactory stimulus after prior exposure to the stimulus. If the adaptation to the olfactory stimulus is acquired during ethanol administration, the adaptation is subsequently displayed only if the ethanol stimulus is again present. cat-1 and cat-2 mutant animals are defective in dopaminergic neuron signaling and are impaired in state dependency, indicating that dopamine functions in state-dependent adaptation in C. elegans.  相似文献   

16.
Innexins in C. elegans   总被引:2,自引:0,他引:2  
Innexins are functionally analogous to the vertebrate connexins, and the innexin family of gap junction proteins has been identified in many invertebrates, including Drosophila and C. elegans. The genome sequencing project has identified 25 innexins in C. elegans. We are particularly interested in the roles that gap junctions may play in embryonic development and in wiring of the nervous system. To identify the particular C. elegans innexins that are involved in these processes, we are examining their expression patterns using specific antibodies and translational GFP fusions. In addition we are investigating mutant, RNAi and overexpression phenotypes for many of these genes. To date, we have generated specific antibodies to the non-conserved carboxyl termini of 5 innexins. We have constructed GFP translational fusions for 17 innexins and observed expression patterns for 13 of these genes. In total we have characterized expression patterns representing 14 innexins. Mutations have been identified in 5 of these genes, and at least 3 others have RNAi mutant phenotypes. Generalities emerging from our studies include: 1) most tissues and many individual cells express more than one innexin, 2) some innexins are expressed widely, while others are expressed in only a few cells, and 3) there is a potential for functional pairing of innexins.  相似文献   

17.
Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202), a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ≤20°C, glp-1(ar202) is wild-type, whereas at 25°C it forms a germline stem cell⁄progenitor cell tumor reminiscent of human cancer. We identify a NOTCH tumor phenotype in which all tumor cells traffic rapidly to G2⁄M post-irradiation, attempt to repair DNA strand breaks exclusively via homology-driven repair, and when this fails die by mitotic death. Homology-driven repair inactivation is dramatically radiosensitizing. We show that these concepts translate directly to human cancer models.  相似文献   

18.
19.
J H Thomas  M J Stern  H R Horvitz 《Cell》1990,62(6):1041-1052
Egg laying by the nematode Caenorhabditis elegans requires the functioning of the vulva, the gonad, the egg-laying muscles, and the two HSN neurons, which innervate these muscles. By analyzing a newly isolated mutant (dig-1) that displaces the gonad, we discovered that cell interactions coordinate the spatial relationships among the different components of the egg-laying system. First, the gonad induces the formation of the vulva, and vulval induction by dorsal gonads strongly suggests that the inductive signal can act at a distance. Second, the gonad acts at a distance to regulate the migrations of the sex myoblasts that generate the egg-laying musculature. Third, the positions of the axonal branch and synapses of each HSN neuron are displaced correspondingly with the rest of the egg-laying system in dig-1 animals, which suggests that cell interactions also control aspects of HSN development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号