首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has previously been shown that deregulated c-myc blocks terminal myeloid differentiation and prematurely recruits both the Type I and II CD95/Fas apoptotic pathways, promoting an incompletely penetrant apoptotic response. In this work it is shown that deregulated expression of either mycER or mycERtrade mark variants also blocked terminal myeloid differentiation but failed to induce the apoptotic response, demonstrating that c-myc can block differentiation independent of the apoptotic response. The failure of the mycERtrade mark transgene to cause the apoptotic response is associated with reduced levels of RIP1 expression, increased Mcl-1 expression and activation of both NF-kB and Akt. In addition, deregulating expression of RIP1 in M1mycERtrade mark cells restored the apoptotic response. Thus altering c-Myc or its downstream effectors can influence the balance between apoptosis and survival, and ultimately the oncogenic potential of the c-myc oncogene. This knowledge can be exploited to manipulate the downstream effectors, such as RIP1, to promote apoptosis and drive the death of cancer cells.  相似文献   

2.
3.
The c-myb proto-oncogene is abundantly expressed in tissues of hematopoietic origin, and changes in endogenous c-myb genes have been implicated in both human and murine hematopoietic tumors. c-myb encodes a DNA-binding protein capable of trans-activating the c-myc promoter. Suppression of both of these proto-oncogenes was shown to occur upon induction of terminal differentiation but not upon induction of growth inhibition in myeloid leukemia cells. Myeloblastic leukemia M1 cells that can be induced for terminal differentiation with the physiological hematopoietic inducers interleukin-6 and leukemia inhibitory factor were genetically manipulated to constitutively express a c-myb transgene. By using immediate-early to late genetic and morphological markers, it was shown that continuous expression of c-myb disrupts the genetic program of myeloid differentiation at a very early stage, which precedes the block previously shown to be exerted by deregulated c-myc, thereby indicating that the c-myb block is not mediated via deregulation of c-myc. Enforced c-myb expression also prevents the loss in leukemogenicity of M1 cells normally induced by interleukin-6 or leukemia inhibitory factor. Any changes which have taken place, including induction of myeloid differentiation primary response genes, eventually are reversed. Also, it was shown that suppression of c-myb, essential for terminal differentiation, is not intrinsic to growth inhibition. Taken together, these findings show that c-myb plays a key regulatory role in myeloid differentiation and substantiate the notion that deregulated expression of c-myb can play an important role in leukemogenicity.  相似文献   

4.
The putative role of Ca2+ and calmodulin in regulating cell proliferation and differentiation was tested in HL-60 human promyelocytic leukemia cells. The dependence of retinoic acid (RA)-induced terminal myeloid differentiation of HL-60 promyelocytic leukemia cells on calmodulin levels and calcium ion flux was ascertained. RA-treated and untreated control cells were stained for cellular DNA with a Hoechst dye. Populations of G1/0, S and G2+M phase cells were isolated by fluorescence activated cell sorting (FACS). Cytosolic calmodulin levels were then measured as a function of cell cycle phase for RA-treated and untreated cells using a radioimmunoassay. RA-treated cells were measured at early times, corresponding to the precommitment state, and late times, when significant cell differentiation had occurred. Cellular calmodulin levels increased with progression through the cell cycle. In contrast, no difference in calmodulin levels was observed between RA-untreated or -treated cells in the same cell cycle phases at early or late times. RA-induced HL-60 terminal myeloid differentiation was thus apparently not regulated by cellular cytosolic calmodulin levels. These conclusions were supported by the effects of calmodulin antagonists and calcium flux inhibitors. The calmodulin antagonists trifluoperazine and compound 48/80 both retarded cell growth in a concentration-dependent manner. But at concentrations where cellular effect was evidenced by slight growth inhibition, neither antagonist inhibited RA-induced cell differentiation or G1/0 growth arrest. The same was true of the gated calcium channel inhibitors, verapamil and nitrendipene, and the passive calcium flux inhibitor, CoC12. RA-induced HL-60 cell differentiation and arrest in G0 was thus apparently not strongly dependent on cellular calmodulin levels or calcium flux. This is in strong contrast to murine erythroleukemia cells. The results argue against a central regulatory role for calmodulin or calcium flux in control of HL-60 growth arrest or differentiation.  相似文献   

5.
During endochondral bone development, both the chondrogenic differentiation of mesenchyme and the hypertrophic differentiation of chondrocytes coincide with the proliferative arrest of the differentiating cells. However, the mechanisms by which differentiation is coordinated with cell cycle withdrawal, and the importance of this coordination for skeletal development, have not been defined. Through analysis of mice lacking the pRB-related p107 and p130 proteins, we found that p107 was required in prechondrogenic condensations for cell cycle withdrawal and for quantitatively normal alpha1(II) collagen expression. Remarkably, the p107-dependent proliferative arrest of mesenchymal cells was not needed for qualitative changes that are associated with chondrogenic differentiation, including production of Alcian blue-staining matrix and expression of the collagen IIB isoform. In chondrocytes, both p107 and p130 contributed to cell cycle exit, and p107 and p130 loss was accompanied by deregulated proliferation, reduced expression of Cbfa1, and reduced expression of Cbfa1-dependent genes that are associated with hypertrophic differentiation. Moreover, Cbfa1 was detected, and hypertrophic differentiation occurred, only in chondrocytes that had undergone or were undergoing a proliferative arrest. The results suggest that Cbfa1 links a p107- and p130-mediated cell cycle arrest to chondrocyte terminal differentiation.  相似文献   

6.
7.
8.
The relationship between differentiation and the cell cycle of mouse myeloid leukemia M1 cells was studied. The cells were induced to differentiate into macrophage-like cells by treatment with conditioned medium (CM) of hamster embryo cells. CM-treated cells traversed the S phase of the cell cycle at least once, then a fraction of the cells lost the ability to enter the S phase and accumulated in the G1 phase. Incorporation of [3H]thymidine in phagocytosis-induced cells decreased after 12–18 h of CM treatment. The morphology of the differentiated cells changed and the nucleus-cell ratio (NCR) of the individual cells decreased significantly between 12 h and 24 h of CM treatment. The decrease in NCR was well associated with arrest of proliferation in the G1 phase of the cells. The results suggest that G1 arrest of CM-treated M1 cells is an expression of cellular characteristics encoded in the differentiation program.  相似文献   

9.
Interleukin-6 (IL-6) and leukemia inhibitory factor (LIF), two multifunctional cytokines, recently have been identified as physiological inducers of hematopoietic cell differentiation which also induce terminal differentiation and growth arrest of the myeloblastic leukemic M1 cell line. In this work, it is shown that c-myc exhibited a unique pattern of expression upon induction of M1 terminal differentiation by LIF or IL-6, with an early transient increase followed by a decrease to control levels by 12 h and no detectable c-myc mRNA by 1 day; in contrast, c-myb expression was rapidly suppressed, with no detectable c-myb mRNA by 12 h. Vectors containing the c-myc gene under control of the beta-actin gene promoter were transfected into M1 cells to obtain M1myc cell lines which constitutively synthesized c-myc. Deregulated and continued expression of c-myc blocked terminal differentiation induced by IL-6 or LIF at an intermediate stage in the progression from immature blasts to mature macrophages, precisely at the point in time when c-myc is normally suppressed, leading to intermediate-stage myeloid cells which continued to proliferate in the absence of c-myb expression.  相似文献   

10.
Wang Y  Liu Q  Liu Z  Li B  Sun Z  Zhou H  Zhang X  Gong Y  Shao C 《Mutation research》2012,734(1-2):20-29
Berberine has been shown to possess anti-tumor activity against a wide spectrum of cancer cells. It inhibits cancer cell proliferation by inducing cell cycle arrest, at G1 and/or G2/M, and apoptosis. While it has been documented that berberine induces G1 arrest by activating the p53-p21 cascade, it remains unclear what mechanism underlies the berberine-induced G2/M arrest, which is p53-independent. In this study, we tested the anti-proliferative effect of berberine on murine prostate cancer cell line RM-1 and characterized the underlying mechanisms. Berberine dose-dependently induced DNA double-strand breaks and apoptosis. At low concentrations, berberine was observed to induce G1 arrest, concomitant with the activation of p53-p21 cascade. Upon exposure to berberine at a higher concentration (50μM) for 24h, cells exhibited G2/M arrest. Pharmacological inhibition of ATM by KU55933, or Chk1 by UCN-01, could efficiently abrogate the G2/M arrest in berberine-treated cells. Downregulation of Chk1 by RNA interference also abolished the G2/M arrest caused by berberine, confirming the role of Chk1 in the pathway leading to G2/M arrest. Abrogation of G2/M arrest by ATM inhibition forced more cells to undergo apoptosis in response to berberine treatment. Chk1 inhibition by UCN-01, on the other hand, rendered cells more sensitive to berberine only when p53 was inhibited. Our results suggest that combined administration of berberine and caffeine, or other ATM inhibitor, may accelerate the killing of cancer cells.  相似文献   

11.
12.
Mutations in the tumor suppressor gene p53 were found in more than 90% of all human squamous cell carcinomas (SCC). To study the function of p53 in a keratinocyte background, a tetracycline-controlled p53 transgene was introduced into a human SCC cell line (SCC15), lacking endogenous p53. Conditional expression of wild-type p53 protein upon withdrawal of tetracycline was accompanied with increased expression of p21(WAF1/Cip1) resulting in reduced cell proliferation. Flow-cytometric analysis revealed that these cells were transiently arrested in the G1/S phase of the cell cycle. However, when SCC15 cells expressing p53 were exposed to ionizing radiation (IR), a clear shift from a G1/S to a G2/M cell cycle arrest was observed. This effect was greatly depending on the presence of wild-type p53, as it was not observed to the same extent in SCC15 cells lacking p53. Unexpectedly, the p53- and IR-dependent G2/M cell cycle arrest in the keratinocyte background was not depending on increased expression or stabilization of 14-3-3sigma, a p53-regulated effector of G2/M progression in colorectal cancer cells. In keratinocytes, 14-3-3sigma (stratifin) is involved in terminal differentiation and its cell cycle function in this cell type might diverge from the one it fulfills in other cellular backgrounds.  相似文献   

13.
Cyclin-dependent kinase inhibitor p21Cip1 plays a crucial role in regulating cell cycle arrest and differentiation. It is known that p21Cip1 increases during terminal differentiation of cardiomyocytes, but its expression control and biological roles are not fully understood. Here, we show that the p21Cip1 protein is stabilized in cardiomyocytes after mitogenic stimulation, due to its increased CDK2 binding and inhibition of ubiquitylation. The APC/CCdc20 complex is shown to be an E3 ligase mediating ubiquitylation of p21Cip1 at the N terminus. CDK2, but not CDC2, suppressed the interaction of p21Cip1 with Cdc20, thereby leading to inhibition of anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20)-mediated p21Cip1 ubiquitylation. It was further demonstrated that p21Cip1 accumulation caused G2 arrest of cardiomyocytes that were forced to re-enter the cell cycle. Taken together, these data show that the stability of the p21Cip1 protein is actively regulated in terminally differentiated cardiomyocytes and plays a role in inhibiting their uncontrolled cell cycle progression. Our study provides a novel insight on the control of p21Cip1 by ubiquitin-mediated degradation and its implication in cell cycle arrest in terminal differentiation.  相似文献   

14.
How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation.  相似文献   

15.
The 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]-induced differentiation of osteoblasts comprises the sequential induction of cell cycle arrest at G0/G1 and the expression of bone matrix proteins. Reports differ on the effects of IGF binding protein (IGFBP)-5 on bone cell growth and osteoblastic function. IGFBP-5 can be growth stimulatory or inhibitory and can enhance or impair osteoblast function. In previous studies, we have shown that IGFBP-5 localizes to the nucleus and interacts with the retinoid receptors. We now show that IGFBP-5 interacts with nuclear vitamin D receptor (VDR) and blocks retinoid X receptor (RXR):VDR heterodimerization. VDR and IGFBP-5 were shown to colocalize to the nuclei of MG-63 and U2-OS cells and coimmunoprecipitate in nuclear extracts from these cells. Induction of osteocalcin promoter activity and alkaline phosphatase activity by 1,25(OH)2D3 were significantly enhanced when IGFBP-5 was down-regulated in U2-OS cells. Moreover, we found IGFBP-5 increased basal alkaline phosphatase activity and collagen alpha1 type 1 expression, and that 1,25(OH)2D3 was unable to further induce the expression of these bone differentiation markers in MG-63 cells. Expression of IGFBP-5 inhibited MG-63 cell growth and caused cell cycle arrest at G0/G1 and G2/M. Furthermore, IGFBP-5 reduced the effects of 1,25(OH)2D3 in blocking cell cycle progression at G0/G1 and decreased the expression of cyclin D1. These results demonstrate that IGFBP-5 can interact with VDR to prevent RXR:VDR heterodimerization and suggest that IGFBP-5 may attenuate the 1,25(OH)2D3-induced expression of bone differentiation markers while having a modest effect on the 1,25(OH)2D3-mediated inhibition of cell cycle progression in bone cells.  相似文献   

16.
Summary Retinoic acid is known to cause the myeloid differentiation and G1/0 cell cycle arrest of HL-60 cells in a process that requires mitogen-activated protein/extracellular signal regulated kinase (MEK)-dependent extracellular signal regulated kinase (ERK)2 activation. It has also been shown that ectopic expression of cFMS, a platelet-derived growth factor (PDGF)-family transmembrane tyrosine kinase receptor, enhances retinoic acid-induced differentiation and G1/0 arrest. The mechanism of how the retinoic acid and cFMS signaling pathways intersect is not known. The present data show that the ectopic expression of cFMS results in the differential loss of sensitivity of retinoic acid-induced differentiation or G1/0 arrest to inhibition of ERK2 activation. PD98059 was used to inhibit MEK and consequently ERK2. In wild-type HL-60 cells, PD98059 blocked retinoic acid-induced differentiation; but in cFMS stable transfectants, PD98059 only attenuated the induced differentiation, with the resulting response resembling that of retinoic acid-treated wild-type HL-60. In wild-type HL-60, PD98059 greatly attenuated the retinoic acid-induced G1/0 arrest allied with retinoblastoma (RB) hypophosphorylation; but in cFMS stable transfectants, PD98059 had no inhibitory effect on RB hypophosphorylation and G1/0 arrest. This differential sensitivity to PD98059 and uncoupling of retinoic acid-induced differentiation and G1/0 arrest in cFMS transfectants is associated with changes in mitogen-activated protein kinase signaling molecules. The cFMS transfectants had more activated ERK2 than did the wild-type cells, which surprisingly was not attributable to enhanced mitogen-activated protein-kinase-kinase-kinase (RAF) phosphorylation. Retinoic acid increased the amount of activated ERK2 and phosphorylated RAF in both cell lines. But PD98059 eliminated detectable ERK2 activation, as well as inhibited RAF phosphorylation, in untreated and retinoic acid-treated wild-type HL-60 and cFMS transfectants, consistent with MEK or ERK feedback-regulation of RAF, in all four cases. Since PD98059 blocks the cFMS-conferred enhancement of the retinoic acid-induced differentiation, but not growth arrest, the data indicate that cFMS-enhanced differentiation acts primarily through MEK and ERK2, but cFMS-enhanced G1/0 arrest allied with RB hypophosphorylation depends on another cFMS signal route, which by itself can effect G1/0 arrest without activated ERK2. Ectopic expression of cFMS and differential sensitivity to ERK2 inhibition thus reveal that retinoic acid-induced HL-60 cell differentiation and G1/0 arrest are differentially dependent on ERK2 and can be uncoupled. A significant unanticipated finding was that retinoic acid caused a MEK-dependent increase in the amount of phosphorylated RAF. This increase may help sustain prolonged ERK2 activation.  相似文献   

17.
The Gadd45 family of proteins, which includes α, β, and γ isoforms, has recently been shown to play a role in the G2/M cell cycle checkpoint in response to DNA damage; however, the mechanisms by which Gadd45 proteins inhibit cell cycle control are not fully understood. Using immunohistochemical analysis, we found that protein expression of Gadd45γ, but not Gadd45α, was down-regulated in hepatocellular carcinoma. We thus investigated possible mechanisms by which Gadd45α and Gadd45γ might differentially induce G2/M arrest in the human hepatoma Hep-G2 cell line. Flow cytometric analysis revealed significant G2/M arrest in cells transfected with either Gadd45α or Gadd45γ. Importantly, we found that expression of either Gadd45α or Gadd45γ activated the P38 and JNK kinase pathways to induce G2/M arrest. Taken together, these findings suggest that the induction of G2/M arrest by Gadd45α or Gadd45γ involves activation of two distinct signaling pathways in Hep-G2 hepatoma cell lines.  相似文献   

18.
Expression of the retinoblastoma (RB) tumor suppressor gene during cell differentiation induced by dimethyl sulfoxide or sodium butyrate was studied in HL-60 human promyelocytic leukemia cells. As cells progressed through the cell cycle, the amount of RB protein per cell increased with homeostasis maintained, so that the amount of RB protein relative to the total cell mass remained almost constant. Dimethyl sulfoxide was used to induce these promyelocytic leukemia cells to undergo terminal differentiation into mature myeloid cells. There was an early reduction in the RB protein expressed per cell. The reduction in expression was similar for cells in all cell cycle phases. There was also progressively reduced expression at later times as cells terminally differentiated. This was compared to the case in which sodium butyrate was used to induce the differentiation of HL-60 cells into mature monocytic cells. An early reduction in RB protein expression per cell also occurred. It occurred for cells in all cell cycle phases as well. Thus, the induced differentiation of HL-60 cells along either the myeloid or the monocytic differentiation lineage involves an early reduction in RB expression, which is common to both pathways. The reduction anteceded proliferative arrest or differentiation. In both cases, the final, resulting G0-differentiated cells had less RB protein per cell than the proliferating, immature, leukemic precursor cells.  相似文献   

19.
The natural polyphenolic alkanone (6)-gingerol (6G) has established anti-inflammatory and antitumoral properties. However, its precise mechanism of action in myeloid leukemia cells is unclear. In this study, we investigated the effects of 6G on myeloid leukemia cells in vitro and in vivo. The results of this study showed that 6G inhibited proliferation of myeloid leukemia cell lines and primary myeloid leukemia cells while sparing the normal peripheral blood mononuclear cells, in a concentration- and time-dependent manner. Mechanistic studies using U937 and K562 cell lines revealed that 6G treatment induced reactive oxygen species (ROS) generation by inhibiting mitochondrial respiratory complex I (MRC I), which in turn increased the expression of the oxidative stress response-associated microRNA miR-27b and DNA damage. Elevated miR-27b expression inhibited PPARγ, with subsequent inhibition of the inflammatory cytokine gene expression associated with the oncogenic NF-κB pathway, whereas the increased DNA damage led to G2/M cell cycle arrest. The 6G induced effects were abolished in the presence of anti-miR-27b or the ROS scavenger N-acetylcysteine. In addition, the results of the in vivo xenograft experiments in mice indicated that 6G treatment inhibited tumor cell proliferation and induced apoptosis, in agreement with the in vitro studies. Our data provide new evidence that 6G-induced myeloid leukemia cell death is initiated by reactive oxygen species and mediated through an increase in miR-27b expression and DNA damage. The dual induction of increased miR-27b expression and DNA damage-associated cell cycle arrest by 6G may have implications for myeloid leukemia treatment.  相似文献   

20.
Li Z  Li J  Mo B  Hu C  Liu H  Qi H  Wang X  Xu J 《Cell biology and toxicology》2008,24(5):401-409
Genistein is an isoflavonoid present in soybeans that exhibits anti-carcinogenic effect. Several studies have shown that genistein can trigger G2/M cell cycle arrest and inhibit cell growth in human breast cancer cells. In the present study, we assessed the role of MEK-ERK cascade in regulation of genistein-mediated G2/M cell cycle arrest in the hormone-independent cell line MDA-MB-231. Flow cytometric analysis showed that treatment of MDA-MB-231 cells with genistein induced a concentration-dependent accumulation of cells in the G2/M phase of the cell cycle, with a parallel depletion of the percentage of cells in G0/G1. Genistein-mediated G2/M arrest was associated with a decrease in the protein levels of Cdk1, cyclinB1, and Cdc25C as determined by Western blot analysis. Genistein induced a slow and stable activation of phosphorylated ERK1/2 in a concentration- and time-dependent manner in MDA-MB-231 cells. MEK1/2-specific inhibitor PD98059 blocked genistein-induced activation of ERK1/2 and markedly attenuated genistein-induced G2/M arrest. Furthermore, genistein induced the expression of Ras and Raf-1 protein. Genistein also up-regulated steady-state levels of both c-Jun and c-Fos. PD98059 did not depress genistein-induced up-regulation of Ras and Raf-1 protein. However, it markedly blocked genistein-induced up-regulation of c-Jun and c-Fos. These results suggest that the Ras/MAPK/AP-1 signal pathway may be involved in genistein-induced G2/M cell cycle arrest in MDA-MB-231 breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号