首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Garcia K  Su TT 《Fly》2008,2(3):133-137
Drosophila researchers met in sunny San Diego for the 49(th) Annual Meeting of The Genetics Society of America. It was cold outside and even colder inside. Like last year, 'Mitosis, Meiosis and Cell Division' was no longer a session. Instead, we searched out and covered talks and posters in 'Cell Division and Growth Control', 'Gametogenesis', 'Cytoskeleton and Cell Biology' and 'Genome and Chromosome Structure'. We split up for maximal coverage and re-grouped later for the Workshop on Cell Cycle and Checkpoints. We apologize in advance for the brevity or omission of some reports.  相似文献   

2.
3.
The regulation of progenitor proliferation in developing brain in has been extensively studied in the cerebral cortex, but relatively little is known about progenitor divisions in ventral germinal zones. Recent observations pertinent to interneuron genesis in the ventral forebrain, especially in the medial ganglionic eminence, indicate similarities to cerebral cortical neurogenesis and hint at some interesting differences between ventral and dorsal telencephalon progenitors. Proliferation within the ganglionic eminences is discussed from the vantage point of neural precursor cell cycles, especially G1-phase, and current models of neurogenic divisions in cortex that may apply to ventral forebrain as well.  相似文献   

4.
Purified populations of quiescent human tumour cells were isolated from plateau phase cultures of PMC-22 cells by centrifugal elutriation. Dilution into fresh medium resulted in these quiescent cells entering S phase exponentially with a t1/2 of 12 hr, after a 18-20-hr lag period during which cellular RNA content increased. Subsequent studies showed that recruitment of quiescent cells into the cell cycle could be regulated by extracellular pH. When exponentially growing PMC-22 cells were exposed to acidic extracellular pH levels, three growth patterns were observed: (1) Normal growth between pH 7.2 to pH 6.8; (2) A reduction in growth rate associated with accumulation of cells with a G1 DNA content between pH 6.7 and 6.4 (this was also shown to occur in a number of other tumour cell lines); (3) Non-cell-cycle-phase-specific arrest of growth at pH levels less than 6.3. Further studies with purified quiescent cell populations showed the possible existence of a pH-dependent restriction point in the G1 phase of these tumour cells. The implications of these observations to tumour biology are discussed.  相似文献   

5.
Cell cycle regulation of NF-YC nuclear localization   总被引:3,自引:0,他引:3  
NF-Y is a trimeric activator with histone fold, HFM, subunits that binds to the CCAAT-box and is required for a majority of cell cycle promoters, often in conjunction with E2Fs. In vivo binding of NF-Y is dynamic during the cell cycle and correlates with gene activation. We performed immunofluorescence studies on endogenous, GFP- and Flag-tagged overexpressed NF-Y subunits. NF-YA, NF-YB are nuclear proteins. Unexpectedly, NF-YC localizes both in cytoplamatic and nuclear compartments and its nuclear localization is determined by the interaction with its heterodimerization partner NF-YB. Most importantly, compartmentalization is regulated during the cell cycle of serum restimulated NIH3T3 cells, accumulating in the nucleus at the onset of S phase. These data point to the control of HFM heterodimerization as an important layer of NF-Y regulation during cell cycle progression.  相似文献   

6.
The microtubular element of the plant cytoskeleton undergoes dramatic architectural changes in the course of the cell cycle, specifically at the entry into and exit from mitosis. These changes underlie the acquisition of specialized properties and functions involved, for example, in the equal segregation of chromosomes and the correct positioning and formation of the new cell wall. Here we review some of the molecular mechanisms by which the dynamics and the organization of microtubules are regulated and suggest how these mechanisms may be under the control of cell cycle events.  相似文献   

7.
8.
9.
Cell cycle regulation of flagellar genes.   总被引:4,自引:5,他引:4       下载免费PDF全文
The expression of the flagellar master operon, flhDC, peaked in the middle of three consecutive cell cycles. The level of expression was lowest at the time of cell division. The expression of the second-level operon, flhB, peaked at cell division. The swimming speed of individual cells was also highest at the time of cell division.  相似文献   

10.
11.
12.
13.
Mechanisms of microRNA-mediated gene regulation in animal cells   总被引:6,自引:0,他引:6  
MicroRNAs are a large family of regulatory molecules found in all multicellular organisms. Even though their functions are only beginning to be understood, it is evident that microRNAs have important roles in a wide range of biological processes, including developmental timing, growth control, and differentiation. Indeed, recent bioinformatic and experimental evidence suggests that a remarkably large proportion of genes (>30%) are subject to microRNA-mediated regulation. Although it is clear that microRNAs function by suppressing protein production from targeted mRNAs, there is, at present, no consensus about how such downregulation is accomplished. In this review, I describe the evidence that there are multiple mechanisms of microRNA-mediated repression and discuss the possible connections between these mechanisms.  相似文献   

14.
Different organisms employ a variety of strategies to segregate their chromosomes during mitosis. Despite these differences, however, the basic regulatory principles that govern this intricate process are evolutionarily conserved. Above all, rapid dephosphorylation of mitotic phosphoproteins upon the metaphase-to-anaphase transition has proven to be essential for proper function of the mitotic spindle and accurate chromosome segregation in all eukaryotes. Recently, a central midzone component, the microtubule crosslinker Ase1/PRC1 (anaphase spindle elongation 1/protein regulating cytokinesis 1), was uncovered as a universal target of such control mechanism. Depending on its phosphorylation status, Ase1 either restrains spindle elongation in metaphase or promotes it after anaphase onset via recruitment of kinesin motor proteins to the midzone. Here we discuss the potential role of Ase1/PRC1 as a central regulatory platform that interconnects distinct functions of the midzone such as spindle stability, spindle elongation and cytokinesis. Additionally, we provide a comparative overview of the chromosome segregation strategies used by the main model organisms.  相似文献   

15.
16.
Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.  相似文献   

17.
18.
19.
20.
S C Hsu  M Qi    D B DeFranco 《The EMBO journal》1992,11(9):3457-3468
Glucocorticoid receptor (GR) nuclear translocation, transactivation and phosphorylation were examined during the cell cycle in mouse L cell fibroblasts. Glucocorticoid-dependent transactivation of the mouse mammary tumor virus promoter was observed in G0 and S phase synchronized L cells, but not in G2 synchronized cells. G2 effects were selective on the glucocorticoid hormone signal transduction pathway, since glucocorticoid but not heavy metal induction of the endogenous Metallothionein-1 gene was also impaired in G2 synchronized cells. GRs that translocate to the nucleus of G2 synchronized cells in response to dexamethasone treatment were not efficiently retained there and redistributed to the cytoplasmic compartment. In contrast, GRs bound by the glucocorticoid antagonist RU486 were efficiently retained within nuclei of G2 synchronized cells. Inefficient nuclear retention was observed for both dexamethasone- and RU486-bound GRs in L cells that actively progress through G2 following release from an S phase arrest. Finally, site-specific alterations in GR phosphorylation were observed in G2 synchronized cells suggesting that cell cycle regulation of specific protein kinases and phosphatases could influence nuclear retention, recycling and transactivation activity of the GR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号