首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs are approximately 21-nucleotide-long regulators of gene expression that gain access to their target mRNAs by complementary base pairing. Recent studies have revealed that animal microRNAs might take diverse routes to repress gene expression, affecting both target mRNA levels and translation. Mechanistic details of microRNA-mediated repression are starting to emerge but a comprehensive picture of the inhibition, and particularly the effects on mRNA translation, is still lacking. Recent data support different microRNA mechanisms and a role for cytoplasmic processing bodies in the degradation and storage of mRNAs targeted by microRNA regulators.  相似文献   

2.
In metazoans, most microRNAs imperfectly base-pair with the 3' untranslated region (3'UTR) of target mRNAs and prevent protein accumulation by either repressing translation or inducing mRNA degradation. Examples of specific mRNAs undergoing microRNA-mediated repression are numerous, but whether the repression is a reversible process remains largely unknown. Here we show that cationic amino acid transporter 1 (CAT-1) mRNA and reporters bearing its 3'UTR can be relieved from the microRNA miR-122-induced inhibition in human hepatocarcinoma cells subjected to different stress conditions. The derepression of CAT-1 mRNA is accompanied by its release from cytoplasmic processing bodies and its recruitment to polysomes. The derepression requires binding of HuR, an AU-rich-element binding protein, to the 3'UTR of CAT-1 mRNA. We propose that proteins interacting with the 3'UTR will generally act as modifiers altering the potential of miRNAs to repress gene expression.  相似文献   

3.
Once loaded onto Argonaute proteins, microRNAs form a silencing complex called miRISC that targets mostly the 3’UTR of mRNAs to silence their translation. How microRNAs are transported to and from their target mRNA remains poorly characterized. While some reports linked intracellular trafficking to microRNA activity, it is still unclear how these pathways coordinate for proper microRNA-mediated gene silencing and turnover. Through a forward genetic screen using Caenorhabditis elegans, we identified the RabGAP tbc-11 as an important factor for the microRNA pathway. We show that TBC-11 acts mainly through the small GTPase RAB-6 and that its regulation is required for microRNA function. The absence of functional TBC-11 increases the pool of microRNA-unloaded Argonaute ALG-1 that is likely associated to endomembranes. Furthermore, in this condition, this pool of Argonaute accumulates in a perinuclear region and forms a high molecular weight complex. Altogether, our data suggest that the alteration of TBC-11 generates a fraction of ALG-1 that cannot bind to target mRNAs, leading to defective gene repression. Our results establish the importance of intracellular trafficking for microRNA function and demonstrate the involvement of a small GTPase and its GAP in proper Argonaute localization in vivo.  相似文献   

4.
5.
6.
MicroRNAs are small RNAs that regulate protein levels. It is commonly assumed that the expression level of a microRNA is directly correlated with its repressive activity – that is, highly expressed microRNAs will repress their target mRNAs more. Here we investigate the quantitative relationship between endogenous microRNA expression and repression for 32 mature microRNAs in Drosophila melanogaster S2 cells. In general, we find that more abundant microRNAs repress their targets to a greater degree. However, the relationship between expression and repression is nonlinear, such that a 10-fold greater microRNA concentration produces only a 10% increase in target repression. The expression/repression relationship is the same for both dominant guide microRNAs and minor mature products (so-called passenger strands/microRNA* sequences). However, we find examples of microRNAs whose cellular concentrations differ by several orders of magnitude, yet induce similar repression of target mRNAs. Likewise, microRNAs with similar expression can have very different repressive abilities. We show that the association of microRNAs with Argonaute proteins does not explain this variation in repression. The observed relationship is consistent with the limiting step in target repression being the association of the microRNA/RISC complex with the target site. These findings argue that modest changes in cellular microRNA concentration will have minor effects on repression of targets.  相似文献   

7.
In mammalian cells, microRNAs regulate the expression of target mRNAs generally by reducing their stability and/or translation, and thereby control diverse cellular processes such as senescence. We recently reported the differential abundance of microRNAs in young (early-passage, proliferating) relative to senescent (late-passage, non-proliferating) WI-38 human diploid fibroblasts. Here we report that the levels of the vast majority of mRNAs were unaltered in senescent compared to young WI-38 cells, while overall mRNA translation was potently reduced in senescent cells. Downregulation of Dicer or Drosha, two major enzymes in microRNA biogenesis, lowered microRNA levels, but, unexpectedly, it also reduced global translation. While a reduction in Dicer levels markedly enhanced cellular senescence, reduction of Drosha levels did not, suggesting that the Drosha/Dicer effects on translation may be independent of senescence, and further suggesting that microRNAs may directly or indirectly enhance mRNA translation in WI-38 cells. We discuss possible scenarios through which Dicer/Drosha/microRNAs could enhance translation.  相似文献   

8.
TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently, knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any, role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.  相似文献   

9.
AU-rich elements (AREs), residing in the 3' untranslated region (UTR) of many labile mRNAs, are important cis-acting elements that modulate the stability of these mRNAs by collaborating with trans-acting factors such as tristetraprolin (TTP). AREs also regulate translation, but the underlying mechanism is not fully understood. Here we examined the function and mechanism of TTP in ARE-mRNA translation. Through a luciferase-based reporter system, we used knockdown, overexpression, and tethering assays in 293T cells to demonstrate that TTP represses ARE reporter mRNA translation. Polyribosome fractionation experiments showed that TTP shifts target mRNAs to lighter fractions. In murine RAW264.7 macrophages, knocking down TTP produces significantly more tumor necrosis factor alpha (TNF-α) than the control, while the corresponding mRNA level has a marginal change. Furthermore, knockdown of TTP increases the rate of biosynthesis of TNF-α, suggesting that TTP can exert effects at translational levels. Finally, we demonstrate that the general translational repressor RCK may cooperate with TTP to regulate ARE-mRNA translation. Collectively, our studies reveal a novel function of TTP in repressing ARE-mRNA translation and that RCK is a functional partner of TTP in promoting TTP-mediated translational repression.  相似文献   

10.
11.
In addition to modulating the function and stability of cellular mRNAs, microRNAs can profoundly affect the life cycles of viruses bearing sequence complementary targets, a finding recently exploited to ameliorate toxicities of vaccines and oncolytic viruses. To elucidate the mechanisms underlying microRNA-mediated antiviral activity, we modified the 3′ untranslated region (3′UTR) of Coxsackievirus A21 to incorporate targets with varying degrees of homology to endogenous microRNAs. We show that microRNAs can interrupt the picornavirus life-cycle at multiple levels, including catalytic degradation of the viral RNA genome, suppression of cap-independent mRNA translation, and interference with genome encapsidation. In addition, we have examined the extent to which endogenous microRNAs can suppress viral replication in vivo and how viruses can overcome this inhibition by microRNA saturation in mouse cancer models.  相似文献   

12.
13.
14.
TOP mRNAs are translationally controlled by mitogenic, growth, and nutritional stimuli through a 5'-terminal oligopyrimidine tract. Here we show that LiCl can alleviate the translational repression of these mRNAs when progression through the cell cycle is blocked at G(0), G(1)/S, or G(2)/M phases in different cell lines and by various physiological and chemical means. This derepressive effect of LiCl does not involve resumption of cell division. Unlike its efficient derepressive effect in mitotically arrested cells, LiCl alleviates inefficiently the repression of TOP mRNAs in amino acid-deprived cells and has no effect in lymphoblastoids whose TOP mRNAs are constitutively repressed even when they are proliferating. LiCl is widely used as a relatively selective inhibitor of glycogen synthase kinase-3. However, inhibition per se of this enzyme by more specific drugs failed to derepress the translation of TOP mRNAs, implying that relief of the translational repression of TOP mRNAs by LiCl is carried out in a glycogen synthase kinase-3-independent manner. Moreover, this effect is apparent, at least in some cell lines, in the absence of S6-kinase 1 activation and ribosomal protein S6 phosphorylation, thus further supporting the notion that translational control of TOP mRNAs does not rely on either of these variables.  相似文献   

15.
MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies   总被引:15,自引:0,他引:15  
Small RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs) can silence target genes through several different effector mechanisms. Whereas siRNA-directed mRNA cleavage is increasingly understood, the mechanisms by which miRNAs repress protein synthesis are obscure. Recent studies have revealed the existence of specific cytoplasmic foci, referred to herein as processing bodies (P-bodies), which contain untranslated mRNAs and can serve as sites of mRNA degradation. Here we demonstrate that Argonaute proteins--the signature components of the RNA interference (RNAi) effector complex, RISC--localize to mammalian P-bodies. Moreover, reporter mRNAs that are targeted for translational repression by endogenous or exogenous miRNAs become concentrated in P-bodies in a miRNA-dependent manner. These results provide a link between miRNA function and mammalian P-bodies and suggest that translation repression by RISC delivers mRNAs to P-bodies, either as a cause or as a consequence of inhibiting protein synthesis.  相似文献   

16.
17.
18.
AU-rich elements (AREs) in 3'-untranslated regions of mRNAs confer instability. They target mRNAs for rapid deadenylation and degradation and may enhance decapping. The p38 MAPK pathway stabilizes many otherwise unstable ARE-containing mRNAs encoding proteins involved in inflammation; however, the mRNA decay step(s) regulated by the signaling pathway are unknown. To investigate whether it regulates deadenylation or the decay of the mRNA body, we used a tetracycline-regulated beta-globin mRNA reporter system to transcribe pulses of mRNA of uniform length. We measured on Northern gels the migration of reporter mRNAs isolated from cells transfected only with reporter plasmid or co-transfected with an active mutant of MAPK kinase-6, and treated either with or without the p38 MAPK inhibitor SB 203580. Differences in migration were shown by RNase H mapping with oligo(dT) to be due to poly(A) shortening. Insertion of an ARE into the beta-globin reporter mRNA promoted rapid deadenylation and decay of hypo-adenylated reporter mRNA. p38 MAPK activation inhibited the deadenylation of reporter mRNAs containing either the cyclooxygenase-2 or tumor necrosis factor AREs. The regulation of deadenylation by p38 MAPK was found to be specific because deadenylation of the beta-globin reporter mRNA either lacking an ARE or containing the c-Myc 3'-untranslated region (which is not p38 MAPK-responsive) was unaffected by p38 MAPK. It was concluded that the p38 MAPK pathway predominantly regulates deadenylation, rather than decay of the mRNA body, and this provides an explanation for why p38 MAPK regulates mRNA stability in some situations and translation in others.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号