首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
3.
Several studies have shown that forced expression of oncogenic H-ras can induce a senescence-like permanent growth arrest in normal cells. Here we report that expression of oncogenic H-ras in human osteosarcoma U2OS cells also resulted in a senescence-like flat and enlarged cell morphology and permanent growth arrest. In contrast to normal human fibroblasts, U2OS cells were arrested independently of the p16 and ARF tumor suppressors. Treatment with a MEK inhibitor or a p38MAPK inhibitor interrupted oncogenic H-ras-induced growth arrest in U2OS cells, suggesting that activation of MAPK pathways is important. To further determine whether this process is unique to oncogenic H-ras signaling, we examined the effect of oncogenic K-ras on normal cells and human osteosarcoma cells. Similar to oncogenic H-ras, oncogenic K-ras also induced senescence in normal fibroblasts, while transforming immortalized mouse fibroblasts. However, in contrast to oncogenic H-ras, oncogenic K-ras failed to induce a permanent growth arrest in osteosarcoma U2OS cells. Additionally, cells transduced with oncogenic K-ras exhibited distinguishable cellular changes compared to those transduced with oncogenic H-ras. In summary, we report for the first time that oncogenic H-ras signaling can trigger a senescence-like growth arrest in tumor cells, independent of the p16 and ARF tumor suppressors. This result suggests that tumor cells may harbor a senescence-like program that can be activated by ras signaling. Moreover, our study uncovered a cell type-dependent differential response to oncogenic K-ras, as compared to oncogenic H-ras.  相似文献   

4.
5.
To study the role of the cytoplasmic domain and particularly the tyrosine residues of the erythropoietin receptor (EpoR) in erythroid differentiation of human primary stem cells, we infected cord blood-derived CD34+ cells with retroviruses encoding chimeric receptors containing the extracellular domain of the prolactin receptor (PRLR) and the cytoplasmic domain of either the normal EpoR or a truncated EpoR devoid of tyrosine residues. Erythroid differentiation of the infected progenitors could thus be studied after stimulation by PRL. The complete PRLR was used to assess its ability to substitute for EpoR in erythroid differentiation. Typical erythroid day-14 colonies were observed from CD34+ cells grown in PRL when infected with any of the three viral constructs. These results demonstrate that: (i) the activation of the virally transduced PRLR leads to erythroid colony formation showing that erythroid terminal differentiation can be induced by a non-erythroid receptor in human progenitors; (ii) a chimeric receptor PRLR/EpoR is able to transduce a signal leading to terminal erythroid differentiation of human CD34+ cells; (iii) in contrast to results previously reported in murine models, tyrosine residues of the EpoR are not required for growth and terminal differentiation of human erythroid progenitors.  相似文献   

6.
Activation of K-ras and inactivation of p16 are the most frequently identified genetic alterations in human pancreatic epithelial adenocarcinoma (PDAC). Mouse models engineered with mutant K-ras and deleted p16 recapitulate key pathological features of PDAC. However, a human cell culture transformation model that recapitulates the human pancreatic molecular carcinogenesis is lacking. In this study, we investigated the role of p16 in hTERT-immortalized human pancreatic epithelial nestin-expressing (HPNE) cells expressing mutant K-ras (K-rasG12V). We found that expression of p16 was induced by oncogenic K-ras in these HPNE cells and that silencing of this induced p16 expression resulted in tumorigenic transformation and development of metastatic PDAC in an orthotopic xenograft mouse model. Our results revealed that PI3K/Akt, ERK1/2 pathways and TGFα signaling were activated by K-ras and involved in the malignant transformation of human pancreatic cells. Also, p38/MAPK pathway was involved in p16 up-regulation. Thus, our findings establish an experimental cell-based model for dissecting signaling pathways in the development of human PDAC. This model provides an important tool for studying the molecular basis of PDAC development and gaining insight into signaling mechanisms and potential new therapeutic targets for altered oncogenic signaling pathways in PDAC.  相似文献   

7.
Reelin is an extracellular glycoprotein that is highly conserved in mammals. In addition to its expression in the nervous system, Reelin is present in erythroid cells but its function there is unknown. We report in this study that Reelin is up-regulated during erythroid differentiation of human erythroleukemic K562 cells and is expressed in the erythroid progenitors of murine bone marrow. Reelin deficiency promotes erythroid differentiation of K562 cells and augments erythroid production in murine bone marrow. In accordance with these findings, Reelin deficiency attenuates AKT phosphorylation of the Ter119+CD71+ erythroid progenitors and alters the cell number and frequency of the progenitors at different erythroid differentiation stages. A regulatory role of Reelin in erythroid differentiation is thus defined.  相似文献   

8.
Erythropoietin (EPO) and Stem Cell Factor (SCF) have partially distinct functions in erythroid cell development. The primary functions of EPO are to prevent apoptosis and promote differentiation, with a minor role as a mitogen. On the other hand SCF acts primarily as a mitogenic factor promoting erythroid cell proliferation with a minor role in inhibition of apoptosis. The concerted effects of these two growth factors are responsible for guiding initial commitment, expansion and differentiation of progenitors. The aim of the study was to identify signaling elements pertinent to translational control and elucidate whether both cytokines can contribute to protein translation providing some functional redundancy as seen with respect to apoptosis. The current study focused on non-apoptotic functions of SCF mediated through mTOR/p70S6 leading to protein translation and cell proliferation. We utilized a human primary erythroid progenitors and erythroblasts that are responsive to EPO and SCF to investigate the activation of mTOR/p70S6 kinases and their downstream effectors, the pathway primarily responsible for protein translation. We showed that mTOR, p70S6 kinases and their downstream signaling elements 4EBP1 and S6 ribosomal protein are all activated by SCF but not by EPO in primary erythroid progenitors. We also found that SCF is the sole contributor to activation of the protein translational machinery and activation of mTOR/p70S6 pathway is confined to the proliferative phase of erythroid differentiation program. Altogether these results demonstrate that unlike the survival function which is supported by both EPO and SCF protein translation essential for proliferation is governed by only SCF.  相似文献   

9.
10.
11.
12.
Activating mutations within the K-ras gene occur in a high percentage of human pancreatic carcinomas. We reported previously that the presence of oncogenic, activated K-ras in human pancreatic carcinoma cell lines did not result in constitutive activation of the extracellular signal-regulated kinases (ERK1 and ERK2). In the present study, we further characterized the ERK signaling pathway in pancreatic tumor cell lines in order to determine whether the ERK pathway is subject to a compensatory downregulation. We found that the attenuation of serum-induced ERK activation was not due to a delay in the kinetics of ERK phosphorylation. Treatment with the tyrosine phosphatase inhibitor orthovanadate increased the level of ERK phosphorylation, implicating a vanadate-sensitive tyrosine phosphatase in the negative regulation of ERK. Furthermore, expression of a dual specificity phosphatase capable of inactivating ERK known as mitogen-activated protein (MAP) kinase phosphatase-2 (MKP-2) was elevated in most of the pancreatic tumor cell lines and correlated with the presence of active MAP kinase kinase (MEK). Taken together, these results suggest that pancreatic tumor cells expressing oncogenic K-ras compensate, in part, by upregulating the expression of MKP-2 to repress the ERK signaling pathway.  相似文献   

13.
Type I interferons (IFNs) are potent regulators of normal hematopoiesis in vitro and in vivo, but the mechanisms by which they suppress hematopoietic progenitor cell growth and differentiation are not known. In the present study we provide evidence that IFN alpha and IFN beta induce phosphorylation of the p38 mitogen-activated protein (Map) kinase in CD34+-derived primitive human hematopoietic progenitors. Such type I IFN-inducible phosphorylation of p38 results in activation of the catalytic domain of the kinase and sequential activation of the MAPK-activated protein kinase-2 (MapKapK-2 kinase), indicating the existence of a signaling cascade, activated downstream of p38 in hematopoietic progenitors. Our data indicate that activation of this signaling cascade by the type I IFN receptor is essential for the generation of the suppressive effects of type I IFNs on normal hematopoiesis. This is shown by studies demonstrating that pharmacological inhibitors of p38 reverse the growth inhibitory effects of IFN alpha and IFN beta on myeloid (colony-forming granulocytic-macrophage) and erythroid (burst-forming unit-erythroid) progenitor colony formation. In a similar manner, transforming growth factor beta, which also exhibits inhibitory effects on normal hematopoiesis, activates p38 and MapKapK-2 in human hematopoietic progenitors, whereas pharmacological inhibitors of p38 reverse its suppressive activities on both myeloid and erythroid colony formation. In further studies, we demonstrate that the primary mechanism by which the p38 Map kinase pathway mediates hematopoietic suppression is regulation of cell cycle progression and is unrelated to induction of apoptosis. Altogether, these findings establish that the p38 Map kinase pathway is a common effector for type I IFN and transforming growth factor beta signaling in human hematopoietic progenitors and plays a critical role in the induction of the suppressive effects of these cytokines on normal hematopoiesis.  相似文献   

14.
A Bauer  W Mikulits  G Lagger  G Stengl  G Brosch    H Beug 《The EMBO journal》1998,17(15):4291-4303
The avian erythroblastosis virus (AEV) oncoprotein v-ErbA represents a mutated, oncogenic thyroid hormone receptor alpha (c-ErbA/ TRalpha). v-ErbA cooperates with the stem cell factor-activated, endogenous receptor tyrosine kinase c-Kit to induce self-renewal and to arrest differentiation of primary avian erythroblasts, the AEV transformation target cells. In this cooperation, v-ErbA substitutes for endogenous steroid hormone receptor function required for sustained proliferation of non-transformed erythroid progenitors. In this paper, we propose a novel concept of how v-ErbA transforms erythroblasts. Using culture media strictly depleted from thyroid hormone (T3) and retinoids, the ligands for c-ErbA/TRalpha and its co-receptor RXR, we show that overexpressed, unliganded c-ErbA/ TRalpha closely resembles v-ErbA in its activity on primary erythroblasts. In cooperation with ligand-activated c-Kit, c-ErbA/ TRalpha causes steroid-independent, long-term proliferation and tightly blocks differentiation. Activation of c-ErbA/ TRalpha by physiological T3 levels causes the loss of self-renewal capacity and induces synchronous, terminal differentiation under otherwise identical conditions. This T3-induced switch in erythroid progenitor development is correlated with a decrease of c-ErbA-associated histone deacetylase activity. Our results suggest that the crucial role of the mutations activating v-erbA as an oncogene is to 'freeze' c-ErbA/ TRalpha in its non-liganded, repressive conformation and to facilitate its overexpression.  相似文献   

15.
This study was performed to investigate the hypothesis that the erythroid micro-environment plays a role in regulation of globin gene expression during adult erythroid differentiation. Adult baboon bone marrow and human cord blood CD34+ progenitors were grown in methylcellulose, liquid media, and in co-culture with stromal cell lines derived from different developmental stages in identical media supporting erythroid differentiation to examine the effect of the micro-environment on globin gene expression. Adult progenitors express high levels of γ-globin in liquid and methylcellulose media but low, physiological levels in stromal cell co-cultures. In contrast, γ-globin expression remained high in cord blood progenitors in stromal cell line co-cultures. Differences in γ-globin gene expression between adult progenitors in stromal cell line co-cultures and liquid media required cell-cell contact and were associated with differences in rate of differentiation and γ-globin promoter DNA methylation. We conclude that γ-globin expression in adult-derived erythroid cells can be influenced by the micro-environment, suggesting new potential targets for HbF induction.  相似文献   

16.
The course of the differentiation and proliferation of the human erythroid burst-forming units (BFU-E) to colony-forming units (CFU-E) was directly investigated using a combination of highly purified BFU-E, a liquid culture system, and the following clonal assay. Highly purified human blood BFU-E with a purity of 45-79% were cultured in liquid medium with recombinant human erythropoietin (rEP) and recombinant human interleukin-3 (rIL-3) to generate more differentiated erythroid progenitors. The cultured cells were collected daily for investigating the morphology, the increment in the number of cells and the clonality. Ninety percent of purified BFU-E required not only rEP but also rIL-3 for clonal development. By 7 days of liquid culture, the total cell number increased 237 +/- 20-fold above the starting cells, while erythroid progenitors increased 156 +/- 74-fold. As the incubation time in liquid culture increased, the cells continuously differentiated in morphology. Replating experiments with rEP combined with or without rIL-3 showed the following: 1) The number of erythroblasts that were part of erythroid colonies decreased with accompanying erythroid progenitor differentiation and proliferation. 2) As the incubation time in liquid culture increased, erythroid progenitors had a graded loss of their dependency on rIL-3 and a complete loss of dependency was observed after 3 days of liquid culture. At that time 85% of the erythroid progenitors gave rise to colonies of more than 100 erythroblasts which were equivalent to mature BFU-E. These studies provide a quantitative assessment of the loss of IL-3 dependency by BFU-E and indicate that the size of the generated erythroid colonies and their IL-3 requirement correlate with the erythroid differentiated state.  相似文献   

17.
Human parvovirus B19 (B19V) causes a variety of human diseases. Disease outcomes of bone marrow failure in patients with high turnover of red blood cells and immunocompromised conditions, and fetal hydrops in pregnant women are resulted from the targeting and destruction of specifically erythroid progenitors of the human bone marrow by B19V. Although the ex vivo expanded erythroid progenitor cells recently used for studies of B19V infection are highly permissive, they produce progeny viruses inefficiently. In the current study, we aimed to identify the mechanism that underlies productive B19V infection of erythroid progenitor cells cultured in a physiologically relevant environment. Here, we demonstrate an effective reverse genetic system of B19V, and that B19V infection of ex vivo expanded erythroid progenitor cells at 1% O(2) (hypoxia) produces progeny viruses continuously and efficiently at a level of approximately 10 times higher than that seen in the context of normoxia. With regard to mechanism, we show that hypoxia promotes replication of the B19V genome within the nucleus, and that this is independent of the canonical PHD/HIFα pathway, but dependent on STAT5A and MEK/ERK signaling. We further show that simultaneous upregulation of STAT5A signaling and down-regulation of MEK/ERK signaling boosts the level of B19V infection in erythroid progenitor cells under normoxia to that in cells under hypoxia. We conclude that B19V infection of ex vivo expanded erythroid progenitor cells at hypoxia closely mimics native infection of erythroid progenitors in human bone marrow, maintains erythroid progenitors at a stage conducive to efficient production of progeny viruses, and is regulated by the STAT5A and MEK/ERK pathways.  相似文献   

18.
19.

Background  

We recently developed a new method to induce human stem cells (hESCs) differentiation into hematopoietic progenitors by cell extract treatment. Here, we report an efficient strategy to generate erythroid progenitors from hESCs using cell extract from human fetal liver tissue (hFLT) with cytokines. Human embryoid bodies (hEBs) obtained of human H1 hESCs were treated with cell extract from hFLT and co-cultured with human fetal liver stromal cells (hFLSCs) feeder to induce hematopoietic cells. After the 11 days of treatment, hEBs were isolated and transplanted into liquid medium with hematopoietic cytokines for erythroid differentiation. Characteristics of the erythroid cells were analyzed by flow cytometry, Wright-Giemsa staining, real-time RT-PCR and related functional assays.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号