首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hdm2 protein, upon binding to p53, inhibits its tumor suppressor activity. The inhibition of the p53-hdm2 interaction represents therefore a new therapeutic strategy to activate wild type p53 in tumors. Potent low molecular weight compounds inhibiting this protein-protein interaction, which are active in vivo, have just been identified. This offers new perspectives and hopes in this research area.  相似文献   

2.
Disrupting the interaction between the p53 tumor suppressor and its regulator MDM2 is a promising therapeutic strategy in anticancer drug research. In our search for non peptide inhibitors of this protein-protein interaction, we have devised a ligand design concept exploiting the central position of Val 93 in the p53 binding pocket of MDM2. The design of molecules based on this concept has allowed us to rapidly identify compounds having a 3-imidazolyl indole core structure as the first representatives of a new class of potent inhibitors of the p53-MDM2 interaction.  相似文献   

3.
4.
5.
6.
MDM2 binds to the tumor suppressor protein p53 and regulates the level of p53 in cells. Although it is possible to prepare a small amount of the region of MDM2 that binds to p53, the expression level of this fragment of MDM2 is relatively low, limiting the studies involving this protein. Here, we describe a construct for the optimized bacterial expression and purification of the MDM2 p53 binding domain. We found that the expression level of the soluble MDM2 p53 binding domain in bacteria was increased dramatically by fusing it to its interaction partner, the p53 transactivation peptide. Attachment of the p53 transactivation peptide (residues 17-29) to the N-terminus of MDM2 resulted in a more than 200-fold increase of soluble protein expression of the p53 binding domain in bacteria. To obtain the final MDM2 p53 binding domain (residues 5-109) we inserted a tobacco etch virus protease recognition site between the P53 peptide and the MDM2 p53 binding domain. To weaken the protein/peptide interaction and facilitate the separation of the protein from the complex, we introduced a point mutation of one of the key interaction residues (F19A or W23A) in the p53 peptide. The advantages of our new construct are high yield and easy purification of the MDM2 protein.  相似文献   

7.
The p53 tumor suppressor is negatively regulated in cells by the Mdm2 protein. Mdm2 has therefore been the focus of intensive research aiming at using it as a target for cancer therapy with the ultimate goal of restoring p53 activity. Several studies have attempted to ablate Mdm2 expression or disrupt its interaction with p53 in cancer cells. While the p53-Mdm2 duo has concentrated a lot of attention, multiple new and diverse functions and targets of Mdm2 have been uncovered. Downregulation of Mdm2 using an siRNA approach has recently provided evidence for a new role of Mdm2 in the p53 response, by modulating the inhibition of the cyclin-dependent kinase 2 (cdk2) by p21. Here, this and other recent findings are discussed that support a new role for Mdm2 in the regulation of p53 response.  相似文献   

8.
The p53 protein is a key tumor suppressor in mammals. In response to various forms of genotoxic stress p53 stimulates expression of genes whose products induce cell cycle arrest and/or apoptosis. An E3-ubiquitin ligase, Mdm2 (mouse-double-minute 2) and its human ortholog Hdm2, physically interact with the amino-terminus of p53 to mediate its ubiquitin-mediated degradation via the proteasome. Thus, pharmacological inhibition of the p53-Mdm2 interaction leads to overall stabilization of p53 and stimulation of its anti-tumorigenic activity. In this study we characterize the biological effects of a novel class of non-genotoxic isatin Schiff and Mannich base derivatives (ISMBDs) that stabilize p53 on the protein level. The likely mechanism behind their positive effect on p53 is mediated via the competitive interaction with Mdm2. Importantly, unlike Nutlin, these compounds selectively promoted p53-mediated cell death. These novel pharmacological activators of p53 can serve as valuable molecular tools for probing p53-positive tumors and set up the stage for development of new anti-cancer drugs.  相似文献   

9.
The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development.  相似文献   

10.
The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development.  相似文献   

11.
12.
Regulation of Mdm2-Directed Degradation by the C Terminus of p53   总被引:12,自引:6,他引:6       下载免费PDF全文
The stability of the p53 tumor suppressor protein is regulated by interaction with Mdm2, the product of a p53-inducible gene. Mdm2-targeted degradation of p53 depends on the interaction between the two proteins and is mediated by the proteasome. We show here that in addition to the N-terminal Mdm2 binding domain, the C terminus of p53 participates in the ability of p53 to be degraded by Mdm2. In contrast, alterations in the central DNA binding domain of p53, which change the conformation of the p53 protein, do not abrogate the sensitivity of the protein to Mdm2-mediated degradation. The importance of the C-terminal oligomerization domain to Mdm2-targeted degradation of p53 is likely to reflect the importance of oligomerization of the full-length p53 protein for interaction with Mdm2, as previously shown in vitro. Interestingly, the extreme C-terminal region of p53, outside the oligomerization domain, was also shown to be necessary for efficient degradation, and deletion of this region stabilized the protein without abrogating its ability to bind to Mdm2. Mdm2-resistant p53 mutants were not further stabilized following DNA damage, supporting a role for Mdm2 as the principal regulator of p53 stability in cells. The extreme C terminus of the p53 protein has previously been shown to contain several regulatory elements, raising the possibility that either allosteric regulation of p53 by this domain or interaction between this region and a third protein plays a role in determining the sensitivity of p53 to Mdm2-directed degradation.  相似文献   

13.
14.
MDM2 inhibitors for cancer therapy   总被引:1,自引:0,他引:1  
The tumor suppressor p53 is a powerful antitumoral molecule frequently inactivated by mutations or deletions in cancer. However, half of all human tumors express wild-type p53, and its activation by antagonizing its negative regulator murine double minute 2 (MDM2) might offer a new therapeutic strategy. Proof-of-concept experiments have demonstrated the feasibility of this approach in vitro but the development of pharmacological inhibitors has been challenging. Recently, potent and selective small-molecule MDM2 inhibitors have been identified. Studies with these compounds have strengthened the concept that selective, non-genotoxic p53 activation is a viable alternative to current cytotoxic chemotherapy but clinical validation is still pending. Here, the new developments in the quest for pharmacological p53 activators are reviewed with an emphasis on small-molecule inhibitors of the p53-MDM2 interaction.  相似文献   

15.
Capitalizing on crystal structure information obtained from a previous effort in the search for non peptide inhibitors of the p53–MDM2 interaction, we have discovered another new class of compounds able to disrupt this protein–protein interaction, an important target in oncology drug research. The new inhibitors, based on a tetra-substituted imidazole scaffold, have been optimized to low nanomolar potency in a biochemical assay following a structure-guided approach. An appropriate strategy has allowed us to translate the high biochemical potency in significant anti-proliferative activity on a p53-dependent MDM2 amplified cell line.  相似文献   

16.
17.
Negative regulation of p53 functions by Daxx and the involvement of MDM2   总被引:7,自引:0,他引:7  
In normal cells p53 activity is tightly controlled and MDM2 is a known negative regulator. Here we show that via its acidic domain, Daxx binds to the COOH-terminal domain of p53, whose positive charges are critical for this interaction, as Lys to Arg mutations preserved, but Lys to Ala or Ser to Glu mutations abolished Daxx-p53 interaction. These results thus implicate acetylation and phosphorylation of p53 in regulating its binding to Daxx. Interestingly, whereas Daxx did not bind to p53 in cells as assessed by immunoprecipitation, MDM2 expression restored p53-Daxx interaction, and this correlated with deacetylation of p53. In p53/MDM2-null mouse embryonic fibroblasts (DKO MEF), Daxx repressed p53 target promoters whose p53-binding elements were required for the repression. Coexpression of Daxx and MDM2 led to further repression. p53 expression in DKO MEF induced apoptosis and Daxx expression relieved this effect. Similarly, in HCT116 cells, Daxx conferred striking resistance to 5-fluorouracil-induced apoptosis. As p53 is required for 5-fluorouracil-induced cell death, our data show that Daxx can suppress cell death induced by p53 overexpression and p53-dependent stress response. Collectively, our data reveal Daxx as a novel negative regulator of p53. Importantly, posttranslational modifications of p53 inhibit Daxx-p53 interaction, thereby relieving negative regulation of p53 by Daxx.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号