首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The retinoblastoma tumor suppressor gene plays important roles in cell cycle control, differentiation and survival during development and is functionally inactivated in most human cancers. Early studies using gene targeting in mice suggested a critical role for pRb in erythropoiesis, while more recent experiments have suggested that many of the abnormal embryonic phenotypes in the Rb null mouse result from a defective placenta. To address this controversy and determine whether Rb has cell intrinsic functions in erythropoiesis, we examined the effects of Rb loss on red cell production following acute deletion of pRb in vitro and under different stress conditions in vivo. Under stress conditions, pRb was required to regulate erythroblast expansion and promote red cell enucleation. Acute deletion of Rb in vitro induced erythroid cell cycle and differentiation defects similar to those observed in vivo. These results demonstrate a cell intrinsic role for pRb in stress erythropoiesis and hematopoietic homeostasis that has relevance for human diseases.  相似文献   

4.
The role of the fetal spleen in hematopoeisis remains largely unknown. In this particular environment, we show that hematopoietic stem cells do not proliferate, but that they lose multipotency and differentiate exclusively into mature macrophages. B lymphocytes in the spleen derive from committed B cell precursors that are likely to have immigrated from the fetal liver. We developed fetal spleen stromal cell lines that are unique in their capacity to expand myeloid precursors, resulting in large numbers of mature macrophages. These lines secrete high levels of anti-inflammatory molecules. By phenotype, fetal splenic macrophages are reminiscent of their adult counterparts found in the red pulp. We postulate that F4/80(+) splenic macrophages participate in fetal erythropoiesis, as well as in the formation of the splenic architecture.  相似文献   

5.
In mammals, the functional unit for definitive erythropoiesis is the erythroblastic island, a multicellular structure composed of a central macrophage surrounded by developing erythroblasts. Erythroblast-macrophage interactions play a central role in the terminal maturation of erythroblasts, including enucleation. One possible mediator of this cell-cell interaction is the protein Emp (erythroblast macrophage protein). We used targeted gene inactivation to define the function of Emp during hematopoiesis. Emp null embryos die perinatally and show profound alterations in the hematopoietic system. A dramatic increase in the number of nucleated, immature erythrocytes is seen in the peripheral blood of Emp null fetuses. In the fetal liver virtually no erythroblastic islands are observed, and the number of F4/80-positive macrophages is substantially reduced. Those present lack cytoplasmic projections and are unable to interact with erythroblasts. Interestingly, wild type macrophages can bind Emp-deficient erythroblasts, but these erythroblasts do not extrude their nuclei, suggesting that Emp impacts enucleation in a cell autonomous fashion. Previous studies have implicated the actin cytoskeleton and its reorganization in both erythroblast enucleation as well as in macrophage development. We demonstrate that Emp associates with F-actin and that this interaction is important in the normal distribution of F-actin in both erythroblasts and macrophages. Thus, Emp appears to be required for erythroblast enucleation and in the development of the mature macrophages. The availability of an Emp null model provides a unique experimental system to study the enucleation process and to evaluate the function of macrophages in definitive erythropoiesis.  相似文献   

6.
Prognosis of cholangiocarcinoma, a devastating liver epithelial malignancy characterized by early invasiveness, remains very dismal, though its incidence has been steadily increasing. Evidence is mounting that in cholangiocarcinoma, tumor epithelial cells establish an intricate web of mutual interactions with multiple stromal components, largely determining the pervasive behavior of the tumor. The main cellular components of the tumor microenvironment (i.e. myofibroblasts, macrophages, lymphatic endothelial cells), which has been recently termed as ‘tumor reactive stroma’, are recruited and activated by neoplastic cells, and in turn, deleteriously mold tumor behavior by releasing a huge variety of paracrine signals, including cyto/chemokines, growth factors, morphogens and proteinases. An abnormally remodeled and stiff extracellular matrix favors and supports these cell interactions. Although the mechanisms responsible for the generation of tumor reactive stroma are largely uncertain, hypoxia presumably plays a central role. In this review, we will dissect the intimate relationship among the different cell elements cooperating within this complex ‘ecosystem’, with the ultimate goal to pave the way for a deeper understanding of the mechanisms underlying cholangiocarcinoma aggressiveness, and possibly, to foster the development of innovative, combinatorial therapies aimed at halting tumor progression. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

7.
Tracy K  Macleod KF 《Autophagy》2007,3(6):616-619
Understanding the role of BNIP3 in the systemic response to hypoxia has been complicated by conflicting results that indicate on the one hand that BNIP3 promotes cell death, and other data, including our own that BNIP3 is not sufficient for cell death, but rather plays a critical role in hypoxia-induced autophagy. This work suggests that rather than promoting death, BNIP3 may actually allow survival either by preventing ATP depletion or by eliminating damaged mitochondria. However, the function of BNIP3 may be subverted under unusual conditions associated with acidosis that arise following extended periods of hypoxia and anaerobic glycolysis. Despite this novel insight into BNIP3 function, much remains to be done in terms of pinning down a molecular activity for BNIP3 that explains both its role in autophagy and how this may be subverted to induce cell death. As a target of the RB tumor suppressor, our work also places BNIP3 at the center of efforts to exploit autophagy to better treat human cancers in which tumor hypoxia is implicated as a progression factor.  相似文献   

8.
The cell cycle regulatory retinoblastoma (Rb) protein is a key regulator of neural precursor proliferation; however, its role has been expanded to include a novel cell-autonomous role in mediating neuronal migration. We sought to determine the Rb-interacting factors that mediate both the cell cycle and migration defects. E2F1 and E2F3 are likely Rb-interacting candidates that we have shown to be deregulated in the absence of Rb. Using mice with compound null mutations of Rb and E2F1 or E2F3, we asked to what extent either E2F1 or E2F3 interacts with Rb in neurogenesis. Here, we report that E2F1 and E2F3 are both functionally relevant targets in neural precursor proliferation, cell cycle exit, and laminar patterning. Each also partially mediates the Rb requirement for neuronal survival. Neuronal migration, however, is specifically mediated through E2F3, beyond its role in cell cycle regulation. This study not only outlines overlapping and distinct functions for E2Fs in neurogenesis but also is the first to establish a physiologically relevant role for the Rb/E2F pathway beyond cell cycle regulation in vivo.  相似文献   

9.
To elucidate the process of fetal liver hematopoiesis, the relationships between stroma and hematopoietic cells involved in maturation were investigated. Cultured mouse fetal liver explants were established for morphological analysis of the interactions between fetal liver stroma and hematopoietic cells ex vivo. Fetal liver stroma comprised epithelial cells and macrophages, which occupied most of the culture surface. Macrophages proliferated extensively in primary culture, but almost disappeared after 3 passages. Close morphological and functional relationships were established between macrophages and hemopoietic cells, whereas epithelial cells did not interact with blood cells. Scanning electron microscopy revealed that macrophages were in close contact with erythroblasts and formed a three-dimensional network. In each erythroblastic island, 2-3 lymphocytes were also in contact with the macrophages; erythroblasts, lymphocytes and macrophages formed close, firm associations through their cytoplasmic membranes. This cell orientation was confirmed by transmission electron microscopy of fetal liver in vivo. In situ hybridization revealed that the macrophages expressed jagged-1, an important ligand of the Notch signaling system in hematopoiesis.  相似文献   

10.
BACKGROUND: Mice homozygous for a loss-of-function mutation of the recombination-activating gene-2 (RAG 2), which is required for the rearrangement of antigen receptor genes, do not produce mature B and T lymphocytes. But chimeric mice that result from injection of normal embryonic stem (ES) cells into blastocysts from RAG2-deficient mice develop normal mature lymphocyte populations, all of which are derived from the injected ES cells; we have called this process RAG2-deficient blastocyst complementation. Using ES cells with homozygous mutations, RAG-2-deficient blastocyst complementation could provide a physiological assay with which to determine the potential role of almost any gene in the development and/or function of lymphocytes. To test the general utility of this system, we have used it to test the differentiation-potential of ES cells that harbor homozygous loss-of function mutations of their retinoblastoma susceptibility (Rb) gene loci. We chose Rb for this analysis because of its widespread function in the control of the cell cycle and cell differentiation, the adverse effect of homozygous germline mutations of Rb on hematopoiesis in fetal liver, and the embryonic lethality that results when the homozygous Rb mutation is introduced into the germline. RESULTS: Homozygous Rb mutant ES cells can develop into phenotypically normal, mature B and T lymphocytes in the RAG-2-deficient background. Strikingly, Rb-deficient B and T cells do not have major defects in either activation or function. CONCLUSION: We have demonstrated the efficacy of the RAG-2-deficient blastocyst complementation system for evaluating the role of critical genes in lymphocyte development. Our results indicate that Rb expression is not intrinsically required for B-cell or T-cell function, despite the normally high levels of Rb expressed in lymphoid cells.  相似文献   

11.
Cancers likely originate in progenitor zones containing stem cells and perivascular stromal cells. Much evidence suggests stromal cells play a central role in tumor initiation and progression. Brain perivascular cells (pericytes) are contractile and function normally to regulate vessel tone and morphology, have stem cell properties, are interconvertible with macrophages and are involved in new vessel formation during angiogenesis. Nevertheless, how pericytes contribute to brain tumor infiltration is not known. In this study we have investigated the underlying mechanism by which the most lethal brain cancer, Glioblastoma Multiforme (GBM) interacts with pre-existing blood vessels (co-option) to promote tumor initiation and progression. Here, using mouse xenografts and laminin-coated silicone substrates, we show that GBM malignancy proceeds via specific and previously unknown interactions of tumor cells with brain pericytes. Two-photon and confocal live imaging revealed that GBM cells employ novel, Cdc42-dependent and actin-based cytoplasmic extensions, that we call flectopodia, to modify the normal contractile activity of pericytes. This results in the co-option of modified pre-existing blood vessels that support the expansion of the tumor margin. Furthermore, our data provide evidence for GBM cell/pericyte fusion-hybrids, some of which are located on abnormally constricted vessels ahead of the tumor and linked to tumor-promoting hypoxia. Remarkably, inhibiting Cdc42 function impairs vessel co-option and converts pericytes to a phagocytic/macrophage-like phenotype, thus favoring an innate immune response against the tumor. Our work, therefore, identifies for the first time a key GBM contact-dependent interaction that switches pericyte function from tumor-suppressor to tumor-promoter, indicating that GBM may harbor the seeds of its own destruction. These data support the development of therapeutic strategies directed against co-option (preventing incorporation and modification of pre-existing blood vessels), possibly in combination with anti-angiogenesis (blocking new vessel formation), which could lead to improved vascular targeting not only in Glioblastoma but also for other cancers.  相似文献   

12.
Regulators of the cell cycle machinery play a major role in modulating a variety of cellular phenomena including proliferation, quiescence, differentiation, senescence and apoptosis. Studies in the past decade have clearly established a role for the retinoblastoma tumor suppressor protein, Rb, and its primary downstream target E2F1, in the above processes. While the role of the Rb protein in the regulation of cell cycle progression has been analyzed in great detail, its potential roles in apoptosis as well as senescence are relatively less studied. It has become increasingly clear that the anti-apoptotic functions of Rb contribute significantly to the genesis and progression of tumors. This is especially relevant in neuronal systems, since terminally differentiated neurons do not proliferate; therefore the normal anti-proliferative functions of Rb in neurons are not very dominant. This chapter describes the current thoughts on the role of Rb function in the apoptosis and senescence of cells, both of neuronal and non-neuronal origin. Recent studies have also addressed how Rb function is differentially modulated by proliferative and apoptotic signals received at the cell surface, though both lead to Rb inactivation. The contribution of Rb to inducing cellular senescence has been long recognized, but the underlying molecular mechanisms are being elucidated only recently; the contribution of this function of Rb to tumor suppression remains to be understood in detail. It can be expected that an understanding of Rb function in cellular apoptosis and senescence will enhance our ability to develop novel agents and strategies to combat cancer.  相似文献   

13.
The retinoblastoma tumor suppressor (RB) plays an important role in the regulation of cell cycle progression and terminal differentiation of many cell types. Rb(-/-) mouse embryos die at midgestation with defects in cell cycle regulation, control of apoptosis and terminal differentiation. However, chimeric mice composed of wild-type and Rb-deficient cells are viable and show minor abnormalities. To determine the role of Rb in development more precisely, we analyzed chimeric embryos and adults made with marked Rb(-/-) cells. Like their germline Rb(-/-) counterparts, brains of midgestation chimeric embryos exhibited extensive ectopic S-phase entry. In Rb-mutants, this is accompanied by widespread apoptosis. However, in chimeras, the majority of Rb-deficient cells survived and differentiated into neuronal fates. Rescue of Rb(-/-) neurons in the presence of wild-type cells occurred after induction of the p53 pathway and led to accumulation of cells with 4n DNA content. Therefore, the role of Rb during development can be divided into a cell-autonomous function in exit from the cell cycle and a non-cell-autonomous role in the suppression of apoptosis and induction of differentiation.  相似文献   

14.
15.
During mammalian development the fetal liver plays an important role in hematopoiesis. Studies with the macrophage (M phi)-specific mAb F4/80 have revealed an extensive network of M phi plasma membranes interspersed between developing erythroid cells in fetal liver. To investigate the interactions between erythroid cells and stromal M phi, we isolated hematopoietic cell clusters from embryonic day-14 murine fetal liver by collagenase digestion and adherence. Clusters of erythroid cells adhered to glass mainly via M phi, 94% of which bound 19 +/- 11 erythroblasts (Eb) per cell. Bound Eb proliferated vigorously on the surface of fetal liver M phi, with little evidence of ingestion. The M phi could be stripped of their associated Eb and the clusters then reconstituted by incubation with Eb in the presence of divalent cations. The interaction required less Ca++ than Mg++, 100 vs. 250 microM for half-maximal binding, and was mediated by a trypsin-sensitive hemagglutinin on the M phi surface. After trypsin treatment fetal liver M phi recovered the ability to bind Eb and this process could be selectively inhibited by cycloheximide. Inhibition tests showed that the Eb receptor differs from known M phi plasma membrane receptors and fetal liver M phi did not bind sheep erythrocytes, a ligand for a distinct M phi hemagglutinin. We propose that fetal liver M phi interact with developing erythroid cells by a novel nonphagocytic surface hemagglutinin which is specific for a ligand found on Eb and not on mature red cells.  相似文献   

16.
The retinoblastoma tumor suppressor protein (Rb) plays a vital role in regulating mammalian cell cycle progression and inactivation of Rb is necessary for entry into S phase. Rb is inactivated by phosphorylation upon growth factor stimulation of quiescent cells, facilitating the transition from G(1) phase to S phase. Although the signaling events after growth factor stimulation have been well characterized, it is not yet clear how these signals contact the cell cycle machinery. We had found previously that growth factor stimulation of quiescent cells lead to the direct binding of Raf-1 kinase to Rb, leading to its inactivation. Here we show that the Rb-Raf-1 interaction occurs prior to the activation of cyclin and/or cyclin-dependent kinases and facilitates normal cell cycle progression. Raf-1-mediated inactivation of Rb is independent of the mitogen-activated protein kinase cascade, as well as cyclin-dependent kinases. Binding of Raf-1 seemed to correlate with the dissociation of the chromatin remodeling protein Brg1 from Rb. Disruption of the Rb-Raf-1 interaction by a nine-amino-acid peptide inhibits Rb phosphorylation, cell proliferation, and vascular endothelial growth factor-mediated capillary tubule formation. Delivery of this peptide by a carrier molecule led to a 79% reduction in tumor volume and a 57% reduction in microvessel formation in nude mice. It appears that Raf-1 links mitogenic signaling to Rb and that disruption of this interaction could aid in controlling proliferative disorders.  相似文献   

17.
Tightly regulated crosstalk between endothelial cells and pericytes is required for formation and maintenance of functional blood vessels. When the NG2 proteoglycan is absent from pericyte surfaces, vascularization of syngeneic tumors growing in the C57Bl/6 mouse brain is aberrant in several respects, resulting in retardation of tumor progression. In the NG2 null mouse brain, pericyte investment of the tumor vascular endothelium is reduced, causing deficiencies in both pericyte and endothelial cell maturation, as well as reduced basal lamina assembly. While part of this deficit may be due to the previously-identified role of NG2 in β1 integrin-dependent periyte/endothelial cell crosstalk, the ablation of NG2 also appears responsible for loss of collagen VI anchorage, in turn leading to reduced collagen IV deposition. Poor functionality of tumor vessels in NG2 null brain is reflected by reduced vessel patency and increased vessel leakiness, resulting in large increases in tumor hypoxia. These findings demonstrate the importance of NG2-dependent pericyte/endothelial cell interaction in the development and maturation of tumor blood vessels, identifying NG2 as a potential target for anti-angiogenic cancer therapy.  相似文献   

18.
19.
20.
BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif‐1α and Hif target genes, including those involved in glycolysis and angiogenesis—two processes that are also markedly increased in BNip3‐null tumors. Glycolysis inhibition attenuates the growth of BNip3‐null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple‐negative breast cancer (TNBC). These studies show that mitochondrial dysfunction—caused by defects in mitophagy—can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号