首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
  1. Download : Download high-res image (217KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
DNA damage in Arabidopsis thaliana seedlings results in upregulation of hundreds of genes. One of the earliest and highest levels of induction is displayed by a previously uncharacterized gene that we have termed X-ray induced 1 ( XRI1 ). Analysis of plants carrying a null xri1 allele revealed two distinct requirements for this gene in plant fertility. XRI1 was important for the post-meiotic stages of pollen development, leading to inviability of xri pollen and abnormal segregation of the mutant allele in heterozygous xri1 +/− plants. In addition, XRI1 was essential for male and female meiosis, as indicated by the complete sterility of homozygous xri1 mutants due to extensive chromosome fragmentation visible in meiocytes. Abolition of programmed DNA double-strand breaks in a spo11-1 mutant background failed to rescue the DNA fragmentation of xri1 mutants, suggesting that XRI1 functions at an earlier stage than SPO11-1 does. Yeast two-hybrid studies identified an interaction between XRI1 and a novel component of the Arabidopsis MND1/AHP2 complex, indicating possible requirements for XRI1 in meiotic DNA repair.  相似文献   

5.
DNA double-strand breaks (DSBs) are the most cytotoxic form of DNA damage, since they can lead to genome instability and chromosome rearrangements, which are hallmarks of cancer cells. To face this kind of lesion, eukaryotic cells developed two alternative repair pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Repair pathway choice is influenced by the cell cycle phase and depends upon the 5′-3′ nucleolytic processing of the break ends, since the generation of ssDNA tails strongly stimulates HR and inhibits NHEJ. A large amount of work has elucidated the key components of the DSBs repair machinery and how this crucial process is finely regulated. The emerging view suggests that besides endo/exonucleases and helicases activities required for end resection, molecular barrier factors are specifically loaded in the proximity of the break, where they physically or functionally limit DNA degradation, preventing excessive accumulation of ssDNA, which could be threatening for cell survival.  相似文献   

6.
As a member of imitation switch (ISWI) family in ATP-dependent chromatin remodeling factors, RSF complex consists of SNF2h ATPase and Rsf-1. Although it has been reported that SNF2h ATPase is recruited to DNA damage sites (DSBs) in a poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent manner in DNA damage response (DDR), the function of Rsf-1 is still elusive. Here we show that Rsf-1 is recruited to DSBs confirmed by various cellular analyses. Moreover, the initial recruitment of Rsf-1 and SNF2h to DSBs shows faster kinetics than that of γH2AX after micro-irradiation. Signals of Rsf-1 and SNF2h are retained over 30 min after micro-irradiation, whereas γH2AX signals are gradually reduced at 10 min. In addition, Rsf-1 is accumulated at DSBs in ATM-dependent manner, and the putative pSQ motifs of Rsf-1 by ATM are required for its accumulation at DSBs. Furtheremore, depletion of Rsf-1 attenuates the activation of DNA damage checkpoint signals and cell survival upon DNA damage. Finally, we demonstrate that Rsf-1 promotes homologous recombination repair (HRR) by recruiting resection factors RPA32 and Rad51. Thus, these findings reveal a new function of chromatin remodeler Rsf-1 as a guard in DNA damage checkpoints and homologous recombination repair.  相似文献   

7.
目的 核酸酶介导的DNA双链末端切割对同源重组修复至关重要。然而,DNA末端构型对RecJ 5’-3’核酸外切酶活性的调控尚不清楚。本研究旨在探究DNA3’端和5’端构型对RecJ核酸外切酶活性的影响及其机制。方法 为探究DNA3’端构型对RecJ核酸外切酶活性的影响,使用含有Mg2+的体系,对具有不同3’突出末端长度(9 nt与18 nt)和3’突出末端修饰(磷酸化和硫代磷酸酯修饰)的单链DNA分别进行RecJ核酸酶活性检测。为揭示DNA 3’端构型对RecJ外切酶活性的调控机制,在Mg2+缺失的体系中,使RecJ与底物结合后进行凝胶迁移实验(EMSA)。为探索其他调控因子与DNA3’端构型对RecJ的协同作用,分别检测5’端磷酸化修饰和单链DNA结合蛋白(SSB)对DNA3’突出末端修饰的影响。结果 DNA3’端构型包括突出末端的长度和修饰(磷酸化和硫代磷酸酯修饰)均会抑制RecJ外切酶活性。DNA 3’端磷酸化和硫代磷酸酯修饰通过重塑RecJ-DNA的结合模式抑制RecJ外切酶活性。DNA 5’端磷酸化修饰可增强RecJ对具有不同3’端...  相似文献   

8.
The Rad1 gene is evolutionarily conserved from yeast to human. The fission yeast Schizosaccharomyces pombeRad1 ortholog promotes cell survival against DNA damage and is required for G2/M checkpoint activation. In this study, mouse embryonic stem (ES) cells with a targeted deletion of Mrad1, the mouse ortholog of this gene, were created to evaluate its function in mammalian cells. Mrad1-/- ES cells were highly sensitive to ultraviolet-light (UV light), hydroxyurea (HU) and gamma rays, and were defective in G2/M as well as S/M checkpoints. These data indicated that Mrad1 is required for repairing DNA lesions induced by UV-light, HU and gamma rays, and for mediating G2/M and S/M checkpoint controls. We further demonstrated that Mrad1 plays an important role in homologous recombination repair (HRR) in ES cells, but a minor HRR role in differentiated mouse cells.  相似文献   

9.
10.
Plants have various defense mechanisms against environmental stresses that induce DNA damage. Genetic and biochemical analyses have revealed the sensing and signaling of DNA damage, but little is known about subnuclear dynamics in response to DNA damage in living plant cells. Here, we observed that the chromatin remodeling factor RAD54, which is involved in DNA repair via the homologous recombination pathway, formed subnuclear foci (termed RAD54 foci) in Arabidopsis thaliana after induction of DNA double‐strand breaks. The appearance of RAD54 foci was dependent on the ATAXIA‐TELANGIECTASIA MUTATED–SUPPRESSOR OF GAMMA RESPONSE 1 pathway, and RAD54 foci were co‐localized with γH2AX signals. Laser irradiation of a subnuclear area demonstrated that in living cells RAD54 was specifically accumulated at the damaged site. In addition, the formation of RAD54 foci showed specificity for cell type and region. We conclude that RAD54 foci correspond to DNA repair foci in A. thaliana.  相似文献   

11.
《Molecular cell》2023,83(8):1237-1250.e15
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
  相似文献   

12.
DNA双链断裂损伤修复系统研究进展   总被引:3,自引:1,他引:3  
多种内源或外源因素都能造成细胞基因组DNA损伤,细胞内建立了复杂的修复系统来应对不同形式的损伤。其中DNA双链断裂(DNA double-strand breaks,DSBs)作为最严重的损伤形式,主要激活同源重组修复(Homologous recombination repair)和非同源末端连接(Non-homologous end joining)通路。这两条通路都是由多个修复元件参与、经过多步反应的复杂过程。两者各具特点、协同作用,共同维护细胞基因组的稳定性。对其分子机制的阐明为肿瘤放化疗的辅助治疗提供了潜在的作用靶点。  相似文献   

13.
The partner and localizer of breast cancer 2 susceptibility protein (PALB2) is crucial for the repair of DNA damage by homologous recombination. Here, we report that chromatin-association motif (ChAM), an evolutionarily conserved motif in PALB2, is necessary and sufficient to mediate its chromatin association in both unperturbed and damaged cells. ChAM is distinct from the previously described PALB2 DNA-binding regions. Deletion of ChAM decreases PALB2 and Rad51 accumulation at DNA damage sites and confers cellular hypersensitivity to the genotoxic drug mitomycin C. These results suggest that PALB2 chromatin association via ChAM facilitates PALB2 function in the cellular resistance to DNA damage.  相似文献   

14.
15.
16.
17.
Replication fork stalling at DNA lesions is a common problem during the process of DNA replication. One way to allow the bypass of these lesions is via specific recombination-based mechanisms that involve switching of the replication template to the sister chromatid. Inherent to these mechanisms is the formation of DNA joint molecules (JMs) between sister chromatids. Such JMs need to be disentangled before chromatid separation in mitosis and the activity of JM resolution enzymes, which is under stringent cell cycle control, is therefore up-regulated in mitosis. An additional layer of control is facilitated by scaffold proteins. In budding yeast, specifically during mitosis, Slx4 and Dpb11 form a cell cycle kinase-dependent complex with the Mus81-Mms4 structure-selective endonuclease, which allows efficient JM resolution by Mus81. Furthermore, Slx4 and Dpb11 interact even prior to joining Mus81 and respond to replication fork stalling in S-phase. This S-phase complex is involved in the regulation of the DNA damage checkpoint as well as in early steps of template switch recombination. Similar interactions and regulatory principles are found in human cells suggesting that Slx4 and Dpb11 may have an evolutionary conserved role organizing the cellular response to replication fork stalling.  相似文献   

18.
Replication fork stalling at DNA lesions is a common problem during the process of DNA replication. One way to allow the bypass of these lesions is via specific recombination-based mechanisms that involve switching of the replication template to the sister chromatid. Inherent to these mechanisms is the formation of DNA joint molecules (JMs) between sister chromatids. Such JMs need to be disentangled before chromatid separation in mitosis and the activity of JM resolution enzymes, which is under stringent cell cycle control, is therefore up-regulated in mitosis. An additional layer of control is facilitated by scaffold proteins. In budding yeast, specifically during mitosis, Slx4 and Dpb11 form a cell cycle kinase-dependent complex with the Mus81-Mms4 structure-selective endonuclease, which allows efficient JM resolution by Mus81. Furthermore, Slx4 and Dpb11 interact even prior to joining Mus81 and respond to replication fork stalling in S-phase. This S-phase complex is involved in the regulation of the DNA damage checkpoint as well as in early steps of template switch recombination. Similar interactions and regulatory principles are found in human cells suggesting that Slx4 and Dpb11 may have an evolutionary conserved role organizing the cellular response to replication fork stalling.  相似文献   

19.
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error‐free pathway for double‐strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication‐associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.  相似文献   

20.
Hypoxia is a characteristic feature of solid tumors and occurs very early in neoplastic development. Hypoxia transforms cell physiology in multiple ways, with profound changes in cell metabolism, cell growth, susceptibility to apoptosis, induction of angiogenesis, and increased motility. Over the past 20 years, our lab has determined that hypoxia also induces genetic instability. We have conducted a large series of experiments revealing that this instability occurs through the alteration of DNA repair pathways, including nucleotide excision repair, DNA mismatch repair, and homology dependent repair. Our work suggests that hypoxia, as a key component of solid tumors, can drive cancer progression through its impact on genomic integrity. However, the acquired changes in DNA repair that are induced by hypoxia may also render hypoxic cancer cells vulnerable to tailored strategies designed to exploit these changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号