首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commentary to:

The cyclin-dependent kinase (CDK) Family member PNQALRE/CCRK supports cell proliferation but has no intrinsic CDK-activating kinase (CAK) activity.

Lara Wohlbold, Stéphane Larochelle, Jack C.-F. Liao, Geulah Livshits, Juliet Singer, Kevan M. Shokat and Robert P. Fisher

Cell Cycle. 2006 Mar;5(5):546-54.  相似文献   

2.
3.
Activation of cyclin-dependent kinases (CDKs) requires phosphorylation of a threonine residue within the T-loop by a CDK-activating kinase (CAK). Here we isolated an Arabidopsis cDNA (CAK4At) whose predicted product shows a high similarity to vertebrate CDK7/p40(MO15). Northern blot analysis showed that expressions of the four Arabidopsis CAKs (CAK1At-CAK4At) were not dependent on cell division. CAK2At- and CAK4At-immunoprecipitates of Arabidopsis crude extract phosphorylated CDK and the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II with different preferences. These results suggest the existence of differential mechanisms in Arabidopsis that control CDK and CTD phosphorylation by multiple CAKs.  相似文献   

4.
The activation of cyclin-dependent protein kinases (CDKs) requires phosphorylation of a threonine residue within the T-loop by a CDK-activating kinase (CAK). The R2 protein of rice is very similar to CAKs of animals and fission yeast at the amino acid level but phosphorylation by R2 has not yet been demonstrated. When R2 was overexpressed in a CAK-deficient mutant of budding yeast, it suppressed the temperature sensitivity of the mutation. Immunoprecipitates of rice proteins with the anti-R2 antibody phosphorylated human CDK2, one of the rice CDKs (Cdc2Os1), and the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II of Arabidopsis. Mutational analysis indicated that R2 phosphorylated the threonine residue within the T-loop of CDK2 and Cdc2Os1. R2 was found mainly in two protein complexes which had molecular masses of 190 kDa and 70 kDa, respectively, whilst the CDK- and CTD-kinase activities associated with R2 were identified in a complex of 105 kDa. These results indicate that R2 is closely related to CAKs of animals and fission yeast in terms of its phosphorylation activity and, moreover, that this CAK of rice is distinct from a CAK of the dicotyledonous plant Arabidopsis.  相似文献   

5.
Fission yeast Csk1 is a CAK-activating kinase (CAKAK).   总被引:12,自引:3,他引:9  
Cell cycle progression is dependent on the sequential activity of cyclin-dependent kinases (CDKs). For full activity, CDKs require an activating phosphorylation of a conserved residue (corresponding to Thr160 in human CDK2) carried out by the CDK-activating kinase (CAK). Two distinct CAK kinases have been described: in budding yeast Saccharomyces cerevisiae, the Cak1/Civ1 kinase is responsible for CAK activity. In several other species including human, Xenopus, Drosophila and fission yeast Schizosaccharomyces pombe, CAK has been identified as a complex homologous to CDK7-cyclin H (Mcs6-Mcs2 in fission yeast). Here we identify the fission yeast Csk1 kinase as an in vivo activating kinase of the Mcs6-Mcs2 CAK defining Csk1 as a CAK-activating kinase (CAKAK).  相似文献   

6.
7.
Cyclin-dependent kinases (CDKs) play an essential role in cell cycle regulation during the embryonic and post-embryonic development of various organisms. Full activation of CDKs requires not only binding to cyclins but also phosphorylation of the T-loop domain. This phosphorylation is catalysed by CDK-activating kinases (CAKs). Plants have two distinct types of CAKs, namely CDKD and CDKF; in Arabidopsis, CDKF;1 exhibits the highest CDK kinase activity in vitro . We have previously shown that CDKF;1 also functions in the activation of CDKD;2 and CDKD;3 by T-loop phosphorylation. Here, we isolated the knockout mutants of CDKF;1 and showed that they had severe defects in cell division, cell elongation and endoreduplication. No defect was observed during embryogenesis, suggesting that CDKF;1 function is primarily required for post-embryonic development. In the cdkf;1 mutants, T-loop phosphorylation of CDKA;1, an orthologue of yeast Cdc2/Cdc28p, was comparable to that in wild-type plants, and its kinase activity did not decrease. In contrast, the protein level and kinase activity of CDKD;2 were significantly reduced in the mutants. Substitution of threonine-168 with a non-phosphorylatable alanine residue made CDKD;2 unstable in Arabidopsis tissues. These results indicate that CDKF;1 is dispensable for CDKA;1 activation but is essential for maintaining a steady-state level of CDKD;2, thereby suggesting the quantitative regulation of a vertebrate-type CAK in a plant-specific manner.  相似文献   

8.
9.
For the full activation of cyclin-dependent kinases (CDKs), not only cyclin binding but also phosphorylation of a threonine (Thr) residue within the T-loop is required. This phosphorylation is catalyzed by CDK-activating kinases (CAKs). In Arabidopsis three D-type CDK genes (CDKD;1-CDKD;3) encode vertebrate-type CAK orthologues, of which CDKD;2 exhibits high phosphorylation activity towards the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. Here, we show that CDKD;2 forms a stable complex with cyclin H and is downregulated by the phosphorylation of the ATP-binding site by WEE1 kinase. A knockout mutant of CDKD;3, which has a higher CDK kinase activity, displayed no defect in plant development. Instead, another type of CAK - CDKF;1 - exhibited significant activity towards CDKA;1 in Arabidopsis root protoplasts, and the activity was dependent on the T-loop phosphorylation of CDKF;1. We propose that two distinct types of CAK, namely CDKF;1 and CDKD;2, play a major role in CDK and CTD phosphorylation, respectively, in Arabidopsis.  相似文献   

10.
11.
Pho85 is a versatile cyclin-dependent kinase (CDK) found in budding yeast that regulates a myriad of eukaryotic cellular functions in concert with 10 cyclins (called Pcls). Unlike cell cycle CDKs that require phosphorylation of a serine/threonine residue by a CDK-activating kinase (CAK) for full activation, Pho85 requires no phosphorylation despite the presence of an equivalent residue. The Pho85-Pcl10 complex is a key regulator of glycogen metabolism by phosphorylating the substrate Gsy2, the predominant, nutritionally regulated form of glycogen synthase. Here we report the crystal structures of Pho85-Pcl10 and its complex with the ATP analog, ATPγS. The structure solidified the mechanism for bypassing CDK phosphorylation to achieve full catalytic activity. An aspartate residue, invariant in all Pcls, acts as a surrogate for the phosphoryl adduct of the phosphorylated, fully activated CDK2, the prototypic cell cycle CDK, complexed with cyclin A. Unlike the canonical recognition motif, SPX(K/R), of phosphorylation sites of substrates of several cell cycle CDKs, the motif in the Gys2 substrate of Pho85-Pcl10 is SPXX. CDK5, an important signal transducer in neural development and the closest known functional homolog of Pho85, does not require phosphorylation either, and we found that in its crystal structure complexed with p25 cyclin a water/hydroxide molecule remarkably plays a similar role to the phosphoryl or aspartate group. Comparison between Pho85-Pcl10, phosphorylated CDK2-cyclin A, and CDK5-p25 complexes reveals the convergent structural characteristics necessary for full kinase activity and the variations in the substrate recognition mechanism.  相似文献   

12.
13.
A cyclin-dependent kinase (cdk)-activating kinase (CAK) has been shown previously to catalyze T-loop phosphorylation of cdks in most eukaryotic cells. This enzyme exists in either of two forms: the major one contains cdk7, cyclin H and an assembly factor called MAT-1, whilst the minor one lacks MAT-1. Cdk7 is unusual among cdks because it contains not one but two residues (S170 and T176 in Xenopus cdk7) in its T-loop that are phosphorylated in vivo. We have investigated the role of S170 and T176 phosphorylation in the assembly and activity of cyclin H-cdk7 dimers. In the absence of MAT-1, phosphorylation of the T-loop appears to be required for cdk7 to bind cyclin H. Phosphorylation of both residues does not require cyclin H binding in vitro. Phosphorylation of S170 is sufficient for cdk7 to bind cyclin H with low affinity, but high affinity binding requires T176 phosphorylation. By mutational analysis, we demonstrate that in addition to its role in promotion of cyclin H binding, S170 phosphorylation plays a direct role in the control of CAK activity. Finally, we show that dual phosphorylation of S170 and T176, or substitution of both phosphorylatable residues by aspartic residues, is sufficient to generate CAK activity to one-third of its maximal value in vitro, even in the absence of cyclin H and MAT-1, and may thus provide further clues as to how cyclins activate cdk subunits.  相似文献   

14.
15.
16.
17.
Cyclin-dependent kinases (CDKs) are the central components of eukaryotic cell cycle regulation. Phosphorylation of CDKs at a conserved threonine residue is required for their full activity and is mediated by a CDK-activating kinase (CAK). The CAK R2 from rice belongs to those CAKs that phosphorylate not only CDKs but also the C-terminal domain (CTD) of RNA polymerase II. We showed that R2 is a nuclear protein with increased expression and increased CTD kinase activity in S-phase. Increasing R2 abundance through a transgenic approach accelerated S-phase progression and overall growth rate in suspension cells. In planta, the CTD kinase activity of R2 was induced by a growth-promoting signal. R2 regulation, therefore, may constitute a plant-specific adaptive mechanism that is used to adjust the rate of cell proliferation in response to a changing environment.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号